COURSE OUTLINE (1)

GENERAL

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6,7 \& 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course deals with tools of Applied Mathematics necessary for students in Physics and in Applied Sciences. Specifically, it deals with the introduction of vectors and tensors (like Kronecker's delta and the Levi-Civita antisymmetric tensor), their use in writing down the fundamental laws of Physics and their use in expressing the parametric equations of geometry (equations of a straight line or of conical sections) that arise in many physics problems. The course also focuses on understanding the fundamental theorems of vector calculus (Green's and Stokes' theorems) and their application in problems in classical electrodynamics and in fluid mechanics. Upon completion of the course, the students will be able to:

- Write down vectors in Cartesian and curvilinear coordinates (like cylindrical and spherical coordinates), perform all related calculations (addition, subtraction, inner and outer products) as well as perform more complex calculations with the aid of the index notation of vectors
- Apply transformations (rotation, parity) to vectors in order to express the
physical laws in equivalent systems of coordinates
- Calculate the directional derivative, the gradient and the Laplacian of a scalar multivariate function as well as the divergence and the curl of a vector function in Cartesian and curvilinear coordinates
- Calculate double and triple integrals of scalar functions as well as path and surface integrals of vector functions in Cartesian and curvilinear coordinates
- Apply the fundamental theorems of vector calculus to problems in physics
\square Calculate second order tensors and apply them to problems in physics (for example in solid body rotation and in electrodynamics)

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment Working in an interdisciplinary environment new research ideas Others...

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Production of

Search for, analysis and synthesis of data and information, with the use of the necessary technology. Working independently. Criticism and self-criticism. Production of free, creative and inductive thinking.

(3) SYLLABUS

Vector analysis in Cartesian, cylindrical and spherical coordinates. Vector transformation under rotation. Vector products and vector identities. Motion in a plane. Calculus of scalar and vector multivariate functions: directional derivative, gradient (in Cartesian and curvilinear coordinates), the nabla operator, divergence, curl and Laplacian. Double and triple integrals and
applications. Change of variables and Jacobian. Path and surface integrals. Fundamental theorems of vector calculus for the gradient, the divergence and the curl and applications in physics.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face	
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of Moodle on-line learning platform for the dissemination of notes, problem sets as well as contacting the students	
TEACHING METHODS The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational	Activity	Semester workload
	Lectures	39
	Tutorials	13
	Bibliography study	52
	Non-guided study	43

visits, project, essay writing, artistic creativity, etc.	Exams	3

(4) TEACHING and LEARNING METHODS - EVALUATION

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
- Related academic journals:

Suggested bibliography :

- Leondaris G. K, Vector Calculus, Theodoridis Press, 2015
- Vergados I. D and G. K. Leondaris, Vector Analysis, , Symeon Press, 1996
- Marsden J. and A. Tromba, Vector Calculus (in Greek), Crete University Press, 2010
- Kraniotis, G. B. and G. K. Leontaris, Vector Calculus, Exercises and Problems with synoptic theory, Theodoridis Press, 2013
- Tsitsas L., Applied Vector Calculus, Athanasopoulos Press, 2003
- Sourlas D., Vector Analysis, Symmetria Press, 2010

