COURSE OUTLINE

(1) GENERAL

SCHOOL	Science			
ACADEMIC UNIT	Department of Physics			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	203	SEMESTER 7		
COURSE TITLE	Nuclear Physics I			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS		
	<u> </u>		4	5
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special Back	ground		
PREREQUISITE COURSES:	non			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	Yes			
COURSE WEBSITE (URL)	http://ecourse.uoi.gr/course/view.php?id=319			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

This course provides to the student the means to conceive Nuclear Physics and more specifically of nuclear structure, nuclear decays and production of nuclear energy. On successful completion, the student will be able to:

- Describe the basic properties of the nucleus such as nuclear mass, isotopic spin, electromagnetic moments and characteristics of the energy levels.
- Handle nuclear stability and nuclear decays, and apply laws which govern them.
- Describe α -decay with relation to the potential barrier, be able to solve the problem and calculate the transmission coefficient and the decay constant.
- Understand the β -decay energy spectrum and handle issues as classification of decays and calculation of the corresponding transition factor.
- Describe the properties of γ -rays and study the decay of nuclear states

with y-rays.

- Describe the shell model and apply it in simple problems of nuclear structure.
- Deal with issues of environmental radioactivity from natural or artificial sources
- Describe the phenomenology of nuclear reactions and the production of energy from fission or fusion.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology

Adapting to new situations Decision-making

Working independently Team work

Working in an international environment Working in an interdisciplinary environment

Production of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment

Showing social, professional and ethical responsibility and

sensitivity to gender issues Criticism and self-criticism

Production of free, creative and inductive thinking

Others...

 $\hbox{-Search for, analysis and synthesis of data and information, with the use of the necessary technology,}\\$

- Working independently,
- Team work,
- Working in an interdisciplinary environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

Properties of nuclei (electric charge distribution, mass – binding energy, angular momentum, parity, isotopic spin, electromagnetic moments). Nuclear stability. Alpha, beta and gamma decay. Nuclear potential. Shell model. Production of nuclear energy.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Use of ICT in teaching and communication with students		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail.	Lectures	39	
Lectures, seminars, laboratory practice,	tutorials	13	
fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art	Study of bibliography	50	
workshop, interactive teaching, educational	Non-directed study	20	
visits, project, essay writing, artistic creativity, etc.	exams	3	
The student's study hours for each learning activity are given as well as the hours of non-			
directed study according to the principles of the ECTS			
the EC13			
	Course total	125	
STUDENT PERFORMANCE			
EVALUATION Description of the evaluation procedure	Written exams at the end of the semester for the		
	evaluation of conclusive understanding and		
Language of evaluation, methods of evaluation, summative or conclusive, multiple	problem solving capabilities.		
choice questionnaires, short-answer questions,			
open-ended questions, problem solving, written work, essay/report, oral examination,			
public presentation, laboratory work, clinical			
examination of patient, art interpretation, other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to			
students.			
1			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography:
- notes from the instructor (available in the website of the course).

Π.Α. Ασημακόπουλου: Εισαγωγή στην Πυρηνική Φυσική, Εκδόσεις Πανεπιστημίου Ιωαννίνων.

W.N. Cottingham, D.A. Greenwood: Εισαγωγή στην Πυρηνική Φυσική, εκδ. τυπωθήτω-Γιώργος Δαρδανός.

 $\hbox{R.R. Roy, B.P. Nigam: Nuclear Physics, Theory and Experiment, John Willey and Sons.}\\$