COURSE OUTLINE

(1) GENERAL

SCHOOL	NATURAL SCIENCES				
ACADEMIC UNIT	DEPT. OF PHYSICS				
LEVEL OF STUDIES	Graduate Course				
	Graduate Course				
COURSE CODE	M145 SEMESTER 2				
COURSE TITLE	Quantum Optics and Lasers				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lec- tures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHINO HOURS		CREDITS	
			4		7
Add rows if necessary. The organisation o					
methods used are described in detail at (a					
COURSE TYPE	Specialised	general knowle	dge		
general background, special background, specialised general					
knowledge, skills development					
PREREQUISITE COURSES:					
· ·					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	Specialised general knowledge				
ERASMUS STUDENTS	operation general hite medge				
COURSE WEBSITE (URL)	http://www1.physics.uoi.gr/atomol/index_files/Page 3239.htm				

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

The aim of the course is to provide a basis for the quantum description of optics, lasers, and coherent optical processes. The covered topics include: quantum nature of light, notion of a photon, photon detection processes, coherent and squeezed states of the radiation field, lasers, light- mater interaction and nonlinear optics.

On successful completion of this course, the student will be able to:

- describe optical phenomena using a quantum mechanical formalism,
- understand photon generation and detection,
- apply the quantum description of coherent and partially coherent light in interferometry, quantum measurements, quantum noise, quantum correlations
- understand the bases of laser's operation and their characteristics
- understand light-matter interaction at a microscopic level using semiclassical and quantum theory (two and three-level atomic systems interacting with one or two laser fields)
- understand how a number of indicative modern experiments in quantum optics

are carried out

• make quantitative predictions for the outcomes of a number quantum optical experiments

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and informa-	Project planning and management
tion, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

Search for, analysis and synthesis of data and information, with the use of the necessary technology. Working independently.

Team work.

Working in an interdisciplinary environment.

Production of free, creative and inductive thinking.

(3) SYLLABUS

-Survey of classical optics: electromagnetic fields, polarization, diffraction, interference, coherence, non-linear susceptibility, phase matching

-Response of quantum systems to classical electromagnetic radiation: interaction of a twolevel system with incoherent light, the Einstein coefficients, higher-order perturbation theory, multi -photon absorption, non-resonant perturbations, forced oscillations of the atomic dipole moment, frequency mixing, interaction of a two-level system with resonant coherent light, coherent and incoherent processes

-Laser theory: fundamental laser equation, stability analysis, laser threshold, frequency pulling, laser linewidth

-Quantization of the electromagnetic field: Schrodinger equation for a single mode, creation and annihilation operators, the time dependent Schrodinger equation for a single field mode, wave packets, coherent states, time-dependent operators. The Heisenberg picture, the forced harmonic oscillator in the Heisenberg picture, quantization of light field, uncertainty relations and limits of measurability

-Second quantization

-Light /matter interaction: interaction light field—electron wave field, the interaction representation, the dipole approximation, spontaneous and stimulated emission and absorption, perturbation theory, Lamb shift, the dynamic Stark effect

-Quantum theory of coherence: quantum mechanical coherence functions, coherence properties of spontaneously emitted light, quantum beats, squeezed states, quantum noise in amplifiers

- Special topics like: laser cooling and trapping, cold atom systems, the quantum beam splitter, Hanbury Brown and Twiss interferometry, two-photon interferometry....

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face-to- face	
Face-to-face, Distance learning, etc.		
USE OF INFORMATION AND	Use of ICT in teaching and communication with stu-	

COMMUNICATIONS TECHNOLOGY	dents		
Use of ICT in teaching, laboratory education, communication with students	(http://www1.physics.uoi.gr/atomol/index_files/Page 3239.htm)		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are	Lectures	52	
described in detail. Lectures, seminars, laboratory practice, field-	Tutorials	26	
work, study and analysis of bibliography,	Study of bibliography	47	
tutorials, placements, clinical practice, art	Non-directed study	47	
workshop, interactive teaching, educational	Exams	3	
visits, project, essay writing, artistic creativity, etc.			
	Course total	175	
The student's study hours for each learning			
activity are given as well as the hours of non- directed study according to the principles of			
the ECTS			
STUDENT PERFORMANCE	 solving selected problems essay on an topic 		
EVALUATION			
Description of the evaluation procedure	-written exams for the evaluation of conclusive under-		
Language of evaluation, methods of evalua-	standing and problem solvir	ng capabilities	
tion, summative or conclusive, multiple choice			
questionnaires, short-answer questions, open-			
ended questions, problem solving, written			
work, essay/report, oral examination, public presentation, laboratory work, clinical exami-			
nation of patient, art interpretation, other			
Specifically-defined evaluation criteria are			
given, and if and where they are accessible to students.			
Statents			

(5) ATTACHED BIBLIOGRAPHY

- Suggested bibliography: - Related academic journals:

neluteu ueuuemie journuis.

- 1. H. Haken, Light, Vol. 1 & 2, North Holland (1981)
- 2. R. Loudon, Quantum Theory of Light (3rd edition), Oxford University Press (2000)
- 3. M. Fox, Quantum Optics: An introduction, Oxford University press (2006)
- 4. S. Haroche, J. M. Raimond, Exploring the Quantum, Oxford University Press (2006)
- 5. H.A. Bachor, T. C. Ralph, A Gide to experiments in quantum optics, Wiley-VCH (2004)
- 6. P. Meyster, M. Sergent III, Elements of Quantum Optics, Springer-Verlag(1991)
- 7. M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press (1997)
- 8. D.F. Walls, G.J. Milburn, Qunatum optics , Springer-Verlag (1995)
- 9. Μ. Fox, Κβαντική Οπτική: μία εισαγωγή, Πανεπιστημιακές Εκδόσεις Κρήτης (2015)
- 10. J. Wilson, J. Hawkes, Οπτοηλεκτρονική: μία εισαγωγή, Πανεπιστημιακές Εκδόσεις Ε.Μ.Π. (2007)

-Review papers