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ABSTRACT

Nowadays there is an increasing amount of efforts in searching for answers to a
plethora of questions about the world around us. It seems that in the Large Hadron
Collider’s (LHC) era, those efforts are coming to fruition, and at the same time new
triggering questions appear. Among them, the most important are questions about
the nature of dark energy, the particle nature of dark matter, the existence of extra
dimensions, the verification of the mechanism that gives mass to the particle content of
the Standard Model (SM) of particle physics, the existence of supersymmetric particles
etc.

In this thesis, motivated by experimental results in direct connection with some of
the questions above, we first examined scenarios of dark matter interaction with SM
leptons, focusing to the study of low energy recoiling electrons and found promising
results that can be verified in near future experiments. In order to extent these findings,
the dark matter annihilation into photons brought us into the study of triple vertices
with external photons or different gauge bosons in general. Within this framework
we studied in detail the triple gauge boson one-loop vertex containing virtual heavy
fermions and reproduced the most general, analytical expression for that vertex. From
a calculational point of view we developed a new approach to the problem by exclusively
performing calculations in four dimensions and by using physical arguments to handle
infinities or anomalously behaved quantities. Analyzing further the triple gauge boson
vertex we examined the decoupling effects that arise when the virtual fermions mass
becomes very large. The interesting point here was the conclusion that in fact, these
heavy fermions do not decouple completely from the theory. They leave remnants that
are necessary to guarantee the self-consistency of the theory. Moreover, we worked
out quite interesting applications of these results in the SM framework, as well as in
theories beyond the SM.

Furthermore, by using the same techniques we clarified some computational is-
sues about W -boson one-loop contribution to Higgs boson decay into two photons
(H → γγ). Performing the calculation in the unitary gauge and strictly in four di-
mensions, we encountered divergent quantities that we managed to handle by inserting
arbitrary four-vectors. The remaining ambiguites were removed by exploiting physical
arguments. The results obtained by using the combination of these two techniques
(introducing four-vectors to reduce divergencies and using physical considerations to
determine unambiguously the result), verify previous similar results. The validity of
those results has been also tested by the use of a new proposed method (Four Dimen-
sional Regularization) FDR.

Certainly there are open problems that the techniques described above, could an-
swer. These problems constitute the inspiration for further extension of this work.
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0.1. OUTLINE 1

0.1 Outline

It is widely accepted that the SM describes in high accuracy a considerable variety of
phenomena. However there is evidence for the appearance of new phenomena that do
not suit into the SM framework. There appear open questions, which suggest that the
SM must be extended in order to encompass all these new phenomena.

In this thesis we try to shed light on some of them. In particular we are concerned
about dark matter searches, the possible existence of heavy fermions or exotic heavy
bosons and their impact on low energy effective theories such as the SM, as well as
about mass generation mechanism and properties of the Higgs boson which is directly
connected with this mechanism. The outline of this thesis is as follows:

In the first Chapter, we present the basic features of the (SM), emphasizing in
its mathematical construction and the fundamental postulates that it is based on. We
present a list of questions that remain open in the current SM framework. Some selected
issues are presented in more detail since they constitute the necessary theoretical basis
into which the following Chapters are developed.

The second Chapter is concentrated on the efforts to reveal the dark matter’s cor-
puscular nature. After introducing a theory setup, where different models that describe
the possible dark matter and ordinary matter connection are presented, it follows a
study of conventional and non-conventional dark matter searches. We have studied the
relevant cross sections and event rates of processes that contain recoiling nuclei or low
energy electrons scattered in dark matter-nucleus collisions and dark matter-hydrogen
like atoms collisions respectively. It follows a detailed calculation of time modulation
effects on non-conventional searches for dark matter. Finally, an experimental proposal
with promising abilities in the detection of dark matter, is presented.

The third Chapter deals with heavy fermions non-decoupling effects in triple gauge
boson vertices containing one-loop diagrams where heavy fermions are circulating. The
calculation is performed in exactly four dimensions and since the relevant integrals are
divergent a special treatment has been used in order to remove the divergencies. The
problem is treated by introducing arbitrary vectors that shift the integral variable.
Requiring the final result to satisfy the Ward identities and be gauge invariant, we
have found the more general triple gauge boson vertex with these properties. Next
we consider the case where the internal fermions are extremely heavy and investigate
if there are any remnants in the low energy limit. We find that, if at the beginning
the whole fermionic spectrum (heavy and light fermions) constitutes an anomalous
free model, after integrating out the heavy fermions a term survives and it is exactly
the opposite of an anomalous term appearing in the light fermionic spectrum. This
renders the low energy model anomalous free. These results are generalized further in
SM extensions that contain exotic Z ′ gauge bosons or an extra fermion generation.

In Chapter 4 we extent the method of arbitrary shifting vectors that we used in the
previous Chapter. The objective is to calculate the amplitude for the Higgs boson decay
to two photons and to clarify some problems in this calculation appeared recently in
the literature. Again the calculation is performed in four dimensions, in unitary gauge
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and we find that the arbitrary vectors are capable to reduce high order ultraviolet
divergencies to logarithmic ones. We demand the result to be gauge invariant and
finite and by using the Goldstone Boson Equivalence Theorem we can finally obtain
the desired result. As a cross check we perform the calculation using dimensional
regularization and a recently proposed method useful in performing four-dimensional
integral calculations, namely the Four Dimensional Regularization (FDR).

We conclude in a short Chapter 5, where we present future directions and possible
extensions of our work.

A considerable supporting material is collected in several Appendices. In Appendix
A are presented the basic properties of Dirac matrices and the main techniques of Dirac
algebra. Also we append a collection of standard dimensional regularization integrals
useful for checking several calculations especially those in Chapters 3 and 4.

Appendices B, C, D, E, F are related to calculations in Chapter 2. In Appendix
B we describe in detail the calculation of the Feynman propagator related to the
Lagrangian eq. (2.2) which describes the coupling of SM to an abelian dark sector with
arbitrary kinetic or mass mixing. In Appendix C we analyze the general action related
to the Lagrangian eq. (2.2) for different models. In Appendix D are presented the
calculations about the time modulated effects in WIMP-nucleon or electron scattering.
Subsequently in Appendix E we repeat the calculation of WIMP-electron scattering
cross section using a non-relativistic approach since the WIMP’s velocity is β ≈ 10−3.
In the next Appendix F we carefully analyze the matrix element squared for WIMP-
nucleon or electron scattering when the WIMP is a Dirac or Majorana particle. In
the last case we show that this matrix element squared is suppressed by a factor of
β2 ≈ 10−6.

Appendices G-K deal with issues related to Chapter 3. In Appendix G we construct
a simple toy model relevant to non-decoupling heavy fermion effects in triple gauge
boson vertices. An analytic calculation of the general form of such a vertex, where all
the internal, virtual fermions are considered of the same mass, is performed in Appendix
H. This corresponds to a triple vertex containing neutral gauge bosons. The general
case of charged gauge bosons, where the internal fermions have different masses is
presented in Appendix I. In Appendix J we present some analytical expressions for the
integral representations of form factors that determine the triple vertex and study their
limit in various cases. In the following Appendix K we present necessary conditions for
anomaly cancellation and non-decoupling heavy fermion effects in a model with three
different U(1)’s corresponding to three distinct massive or massless gauge bosons X, Y ,
and Z.

In Appendices L and M we present calculations related to Chapter 4. In Appendix
L, the analytical expressions for the coefficients of eq. (4.3), are presented. Appendix M
contains an analytical derivation of the discontinuity of four-dimensional logarithmic
divergent integrals due to surface terms appearing exactly in four dimensions.

Finally in the last Appendix N, some generalized Gordon identities are presented.
These identities are useful during calculations especially in changing from the basis
γµ, γµγ5, kµ, kµγ5 to the basis γµ, γµγ5, σµνkν , σ

µνkνγ
5.



Chapter 1

The Standard Model of particle
physics

In this introductory Chapter, we present the basic formulation of the SM, its math-
ematical structure, the fundamental particle content and the underlying symmetries
which lead to laws that in many cases govern the behaviour of the world around us.
Subsequently are presented the fundamental principles on which is based the construc-
tion of the SM as a self-consistent quantum field theory. This construction is realized in
the framework of the Lagrangian formalism, and posses a variety of high energy physics
features such as the spontaneous symmetry breaking, the renormalizability, the Higgs
mechanism, the chiral anomalies. It follows a brief description of topics that are not
included in the current status of the SM and therefore are basic ingredients of theories
beyond the SM. Most of these topics are presented in more detail in the next Chapters.
Naturally this first Chapter serves as a “building blocks” container that provides the
necessary notions, techniques, notation and tools we will use throughout this thesis.

1.1 Introduction

The SM is a theory that describes the dynamics of subatomic particles and their inter-
actions. It covers most of the study of fundamental interactions in Nature concentrating
on electroweak and strong force. The other fundamental force in Nature, gravity, as
it is described by the General Relativity (GR), is not included in the current frame
of SM. The reason is that gravity is extremely weak and SM in the current form fails
at energies that (graviton) is expected to exist. The SM has a dynamical nature in
the sense that posses an interesting ability to supply for possible extensions to other
theoretical models and at the same time to remain in the heart of them.

As a theory SM was developed during the 20th century and especially in 1960-1980
when its final formulation was almost completed [1–3]. Later developments and discov-
eries confirmed many of the predictions of the SM and enforced its role as a powerful
theory in describing the fundamental interactions in Nature. The two main pillars that
the SM is based on, are the Quantum Mechanics which deals with phenomena that take

3



4 CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS

place in microscopic scales, and the Special Relativity that describes the kinematics
and dynamics of very fast moving objects. These two branches of modern physics coop-
erating with each other create the necessary theoretical framework where a field theory
such as the SM can be developed and operate. Although its formulation is based on
many assumptions, its predictability and the success in explaining various experimental
results are impressive. But certainly the SM is not a theory that describes everything.
There is a plethora of phenomena that do not suit into the SM formulation, since it
does not provide any possible explanation. This fact constitutes an ideal opportunity
to proceed to theories beyond the SM. Some of these topics, where extensions of the
SM claim to provide a possible explanation, contain the corpuscular nature of dark
matter whose existence has been supposed as a possible scenario to explain cosmolog-
ical observations, the experimental verified neutrino oscillations that require that the
neutrino is a massive particle (in contrast with the minimal SM construction where the
neutrino is massless), the hierarchy problem (there is not any explanation in the SM
framework why gravity is ∼ 1032 times weaker than the weak force), and as mentioned
previously, the accession of gravity in the framework of a quantum field theoretical
formalism.

1.2 Particle content of the SM

It is widely accepted that our world, at the low energy level of everyday life, is governed
by four fundamental interactions: strong, electromagnetic, weak and gravitational. As
the energy level where we study several phenomena increases, a unification of some of
the above interactions (electromagnetic and weak) appears, and continuing further it is
believed that a similar unification takes place again reducing the number of fundamen-
tal interactions. The SM is a theory that tends to describe our world in the relatively
low energetic level. Among its basic postulates is the fact that all the matter content
of our universe and the fundamental interactions can be described by the existence
and interactions of a finite (relatively small) number of elementary particles. There
are 61 elementary (based on the knowledge that we posses so far) particles in the SM,
taking into account the number of families, the number of colors and the existence
of antiparticles (Fig. 1.1). In this number is included the recently discovered Higgs
boson [4, 5]. All elementary particles are divided into two big categories according to
their spin: fermions that have a spin-1/2 and bosons that have an integer spin.

The first one of these categories is divided again in subcategories according to the
way that fermions interact with each other or with other particles. According to the
force that they are sensitive to, fermions are divided into leptons (electron, muon, tau,
electron neutrino, muon neutrino, tau neutrino) which interact via the electroweak
interaction (neutrinos are electrically neutral and therefore interact only through weak
force) and quarks (up, down, charm, strange, top, bottom) which except from the
electroweak are also sensitive to the strong interactions since they carry a quantity
called color.
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Figure 1.1: The particle content of SM.

The second category includes gauge bosons, particles that have spin 1 and are
responsible for the mediation of different interactions. The electromagnetic interaction
is mediated by the photon, a massless particle that does not carry any electric charge or
color. The fact that the photon is massless characterizes the electromagnetic interaction
as a long-range force. There are eight massless gluons that are the mediators of the
strong nuclear force. As quarks, they are colored and this allows them to self-interact.
Although they are massless, the strong interaction is not a long-range force. The
reason for that is a phenomenon, called asymptotic freedom that enforces the quarks
and gluons not to exist in a free form but to create colorless composite particles called
hadrons (baryons and mesons). Finally the mediators of the weak interaction are the
Z0 and W± bosons. They are massive and therefore the weak interaction has a short
range.

There is also one last boson that is contained into the SM set of particles. It is
about the long-expected and possibly discovered Higgs boson [4–9]. It does not play
the role of any interaction mediator, has spin 0, is massive and represents the quantum
of the Higgs field that is responsible for giving mass to Z0 andW± bosons and fermions
as well. Since the Higgs boson is massive it possess self-interaction properties. It is
unstable and can decay into other SM particles. Its detection was feasible by studying
these decaying products.
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1.3 The Lagrangian formulation

The SM is a quantum field theory. A basic concept of a field theory is the fact that the
fundamental entity capable to represent essential qualities of a system is the concept
of field, which is a continuous function of space-time φ(x0, ~x), or short φ(x). Motivated
by the Lagrangian formalism of classical mechanics, it is postulated that the dynamics
of a system is described by the action:

S =

∫
d4xL[φi(x), ∂µφi(x)], (1.1)

where L[φi(x), ∂µφi(x)] is the Lagrangian density, a function (usually polynomial) of
the fields and their derivatives. Applying the fundamental principle of the stationary
action under infinitesimal field variations and considering that these variations are equal
to zero on the boundary of a closed region, one obtains the Euler-Lagrange equation,
that is,

δS = 0 ⇒
∫
d4x

[ ∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi)

]
=

∫
d4x

[ ∂L
∂φi

δφi +
∂L

∂(∂µφi)
∂µ(δφi)

]
=

∫
d4x

[ ∂L
∂φi

− ∂µ

( ∂L
∂(∂µφi)

)]
δ(φi) +

∮

S
dS

( ∂L
∂(∂µφi)

)
δ(φi) = 0, (1.2)

where S is a surface that bounds a particular region and on this S the variation of the
fields vanish, δφi = 0. Therefore the surface integral above vanish. Since the variation
δφi is arbitrary, in order the first integral in eq. (1.2) to vanish, the integrand should
be zero, i.e.

∂L
∂φi

− ∂µ

( ∂L
∂(∂µφi)

)
= 0. (1.3)

This is the Euler-Lagrange equation for the field φi or its equation of motion. Using
this formalism we can deduce Noether’s theorem which relates symmetries of a system
with conserved quantities. When we refer to a symmetry of a system we mean a
set of transformations of fields under whom the Lagrangian of this system remains
unchanged. Therefore if we assume that φi(x) → φ̃i(x) = φi(x) + α δαφi(x) + O(α2),
where α is a small parameter and require that L[φi(x), ∂µφi(x)] = L[φ̃i(x), ∂µφ̃i(x)] we
can find:

δαL = 0 ⇒
∑

i

[ ∂L
∂φi

δαφi +
∂L

∂(∂µφi)
δα(∂µφi)

]
= 0 ⇒

⇒
∑

i

[ ∂L
∂φi

δαφi +
∂L

∂(∂µφi)
∂µ(δαφi)

]
= 0 ⇒

⇒
∑

i

[( ∂L
∂φi

− ∂µ(
∂L

∂(∂µφi)
)
)
δαφi + ∂µ

( ∂L
∂(∂µφi)

δαφi

)]
= 0. (1.4)

Taking into account the Euler-Lagrange equations, the first bracket is equal to zero.
Therefore

∑

i

[
∂µ

∂L
∂(∂µφi)

δαφi

]
= ∂µ

∑

i

[ ∂L
∂(∂µφi)

δαφi

]
= ∂µJ

µ = 0, (1.5)
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where Jµ ≡
∑

i[
∂L

∂(∂µφi)
δαφi] represents a conserved current. This fact constitutes the

Noether’s theorem which claims that for every continuous symmetry of a system, there
is a conserved quantity (generalized charge). We can mention here the conservation of
momentum, energy, angular momentum, electric charge etc., that corresponds to the
invariance of the Lagrangian of this system under spatial translation, time translation,
rotation invariance or other internal symmetries (gauge invariance) respectively.

1.4 Mathematical construction

The mathematical construction of SM is based on several postulates. First of all, the
global Poincare symmetry is postulated. It contains space-time symmetries (invari-
ance under translations and rotations), as well as internal symmetries e.g the local
SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry that definitely characterizes the SM. A
second basic postulate of SM is the fact that each particle is represented by a dynamical
entity known as field. In fact the different fields, in addition to being represented by
continuous functions of space-time, in many cases posses a quantum-mechanical charac-
ter in the sense that are represented by non-commutative operators. A third postulate
is that the operating framework of SM is constructed based on the Lagrangian formal-
ism, whose fundamental quantity is the Lagrangian density, an entity invariant under
Lorentz transformations, that describes the whole dynamics of a system. A last but
not least postulate is that the SM Lagrangian remains unchanged under local gauge
transformations. This fact has remarkable consequences in the whole theory and con-
stitutes one of the basic foundations of the SM. We will return to this point later and
will discuss the importance of gauge invariance in more detail.

Certainly all the above postulates are driven by undeniable experimental facts.
The SM is a chiral theory i.e within the SM framework left-handed and right-handed
fermions are treated differently. This is an experimentally verified occurrence. The
name left-handed (right-handed) characterizes the way a particle transforms according
to the left (right)-handed representation of Poincare group (the group of isometries of
Minkowski spacetime).

1.4.1 Constructing the Quantum Electrodynamic (QED) gauge
invariant Lagrangian

A free Dirac fermion is described in the coordinate space by the Dirac equation:

iγµ∂µΨ(x) = mΨ(x), (1.6)

where γµ are the Dirac matrices (for definition and properties see Appendix A) and
Ψ represents the wave function of a Dirac spinor with mass m. This equation can be
derived from the following Lagrangian:

L0 = iΨ(x)γµ∂µΨ(x)−mΨ(x)Ψ(x), (1.7)
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with Ψ(x) ≡ Ψ†(x)γ0. Obviously, this is invariant under the global transformation
Ψ′(x) = ei αΨ(x), where α is a real parameter, but if we require that the Lagrangian
above be invariant under a local transformation Ψ′(x) = ei α(x)Ψ(x), where α(x) a
real-valued function of space-time, then we should also add an extra field Aµ which
has the following transformation property A′

µ(x) = Aµ(x)− 1/q ∂µα(x), where q is the
fermion’s electric charge. In this way we can modify the eq. (1.7) in the following form:

L = iΨ(x)γµDµΨ(x)−mΨ(x)Ψ(x) =

= L0 − qΨ(x)γµAµΨ(x), (1.8)

where Dµ ≡ ∂µ + i q Aµ is the gauge covariant derivative. This expression is invariant
under the above transformation which is called local gauge transformation. In the sec-
ond form of eq. (1.8), it is clear that the requirement the Lagrangian remains invariant
under the local gauge transformations, generates a term that represents an interac-
tion between the fields Ψ(x) and Aµ(x). On the other hand, requiring that the field
Aµ is a propagating field, one should add the following gauge invariant kinetic term
−1/4FµνF

µν , where Fµν ≡ ∂µFν − ∂νFµ represents the electromagnetic field strength.
Therefore eq. (1.8) now becomes:

L = −1

4
FµνF

µν + iΨ/DΨ−mΨΨ

= −1

4
FµνF

µν +Ψ(x)(i/∂ −m)Ψ(x)− qΨ(x)γµΨ(x)Aµ(x) =

= LMaxwell + LDirac + Lint, (1.9)

where /D ≡ γµDµ, /∂ ≡ γµ∂µ and Lint ≡ −qΨ(x)γµΨ(x)Aµ(x) represents the interac-
tion part of the Lagrangian above. The Euler-Lagrange equation for the field Aν(x)
is:

∂µF
µν = qΨ(x)γνΨ(x) = q jν , (1.10)

with the current density given by jν = Ψ(x)γνΨ(x). A mass term for the field Aµ(x)
of the form 1/2m2

AAµ(x)A
µ(x) is forbidden because it clearly breaks the local gauge

invariance. This leads to the fact that the field Aµ(x) represents a massless particle, the
photon. The important fact of this subsection is that the requirement the Lagrangian
of a system to be invariant under local gauge transformations, generates interactions
between different fields in a natural way. This is a general fact not only applied in the
case of QED theory.
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1.4.2 Constructing the Quantum Chromodynamic (QCD) La-
grangian

There are experimental hints and theoretical requirements that hadrons (baryons and
mesons) are composite particles and are constituted by other elementary particles,
called quarks. Baryons contain 3 quarks and mesons contain a quark-antiquark pair.
They carry a quantity called color which allows them to coexist in bound states al-
though they are fermions (they obey the Fermi-Dirac statistic), and to interact via
strong interactions. The experiment indicates that the number of colors is NC = 3
(red, green, blue). In order to construct the QCD gauge invariant Lagrangian, as in
the QED case, we start from the free quark Lagrangian:

L0 =
∑

f

Ψf (iγ
µ∂µ −mf )Ψf , (1.11)

where Ψf is the wavefunction of the quark with flavour f . Obviously this is invariant
under the global gauge transformation Ψ′

f = U Ψf where U †U = U U † = I, det U = 1
and U = exp{iαiti}. Here, ti are the SU(3) generators in the fundamental repre-
sentation (3 × 3 hermitian matrices) with the commutation relation [ta, tb] = i fabctc

where fabc the SU(3) structure constants (chosen totally antisymmetric) and αi real
constants. If we require, the Lagrangian remains unchanged under local gauge trans-
formations, αi → αi(x), the partial derivative should be transformed into a covariant
derivative and additional terms that contain extra fields should appear, among them
terms that show the possible interactions. The covariant derivative related to the above
local transformation is:

Dµ = ∂µ − igAa
µ t

a, (1.12)

where g is the strong coupling and for each generator ta (eight in total in the SU(3)
case), corresponds the field Aa

µ. These fields represent the gauge bosons of strong
interaction that are called gluons. Imposing the following infinitesimal transformations
for Ψf and Aµ:

Ψ′
f = U Ψf ≈ (1 + iαata)Ψf

A′a
µ = Aa

µ +
1

g
∂µ α

a + fabcAb
µ α

c, (1.13)

and adding the gauge invariant kinetic term for the Aa
µ field, the QCD Lagrangian

takes the following form:

LQCD = −1

4
F a
µνF

µν
a +

∑

f

Ψf (i /D −mf )Ψf =

= −1

4
(∂µA

a
ν − ∂νA

a
µ)(∂

µAν
a − ∂νAµ

a) +
∑

f

Ψf (i/∂ −mf )Ψf +

+g Aa
µ

∑

f

Ψfγ
µ ta Ψf − g fabc(∂µA

a
ν)A

µ bAν c −

−1

4
g2 fabc faedAb

µA
c
ν A

µ eAν d, (1.14)
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where F a
µν = ∂µA

a
ν − ∂νA

a
µ+ g fabcAb

µA
c
ν represents the strength tensor for the Aa

µ field.
The second line of eq. (1.14) represents the kinetic term for the Aa

µ field and the kinetic
and mass term for the quark field Ψf . The first term in the third line expresses the
interaction between the fields Aa

µ and Ψf and involves the SU(3) matrices ta. The next
two terms manifest the non-Abelian character of strong interactions corresponding to
cubic and quartic gluon self-interactions respectively. There is not a similar gauge
bosons self-interaction in QED Lagrangian. This new feature of strong interactions
is responsible for two basic properties that they manifest themselves: the asymptotic
freedom, where the interactions become weaker in short distances, and the confinement,
where they become stronger as the distance increases. As in the case of QED, any
mass term for the gauge bosons is forbidden, because it breaks the gauge invariance.
Therefore the gauge bosons of the strong interaction, the gluons, remain massless.

1.4.3 Electroweak sector

Weak interactions constitute one of the fundamental interactions in nature and are
responsible for flavour changing processes governing the fermionic sector of SM. There
is a considerable amount of experimental facts (especially β-decay, π− → µ−νµ) that
have made clear that the left-handed and right-handed chiral fermions are treated dif-
ferently by weak interactions. Data from neutrino scattering, as well as measures of
neutrino emission from astrophysical sources show clearly that there are different neu-
trino flavours and also that neutrinos of one flavour can be transformed to another
flavour, a phenomenon known as neutrino oscillation. The mediators of weak interac-
tions are the massive W± and Z0 gauge bosons which posses the following properties
with respect to their interactions to fermions:

• W±-bosons couple only to left-handed fermions and right-handed antifermions.
This is a clear breaking of parity and charge conjugation. Also they interact
with fermionic doublets that contain fermions which differ by one unit of electric
charge. This kind of interactions has the same universal strength.

• Fermionic interactions with the Z0 boson are characteristic for flavour conserving
vertices. Interactions with neutrinos involve only left-handed chiralities.

Experimental facts suggest that d′, s′ and b′ quarks flavours eigenstates, are a linear
combination of their mass eigenstates and are related by the expression:




d′

s′

b′


 = V




d
s
b


 , (1.15)

where V is a 3 × 3 unitary matrix VV† = V†V = I, called Cabibbo-Kobayashi-
Maskawa (CKM) matrix and is present in flavour mixing processes. An analogous
situation shows the neutrino sector, since as it is suggested by neutrino oscillation phe-
nomena, neutrinos posses a tiny but non-zero mass and the neutrino flavour eigenstates
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are a mixture of their mass eigenstates requiring an analogous to CKM matrix that
relates the two eigenbases.

To construct the electroweak Lagrangian we should take into account left-handed
chiral fermions that transform as doublets and right-handed chiral fermions as siglets
under the weak interactions. Firstly, we define the fermionic doublets and singlets as
follows:

EL(x) =

(
νe
e−

)

L

, QL(x) =

(
u
d

)

L

, eR(x), uR(x), dR(x), (1.16)

where L refers to left-handed and R to right-handed fermions. In terms of the fields
above the free Lagrangian takes the form:

L = EL(i/∂)EL + eR(i/∂)eR +QL(i/∂)QL + uR(i/∂)uR + dR(i/∂)dR. (1.17)

The Lagrangian in eq. (1.17) is obviously invariant under the global gauge transforma-
tions:

E ′
L(x) = exp{iα y1L}ULEL(x), Q′

L(x) = exp{iα y2L}ULQL(x),

e′R(x) = exp{iα y1R} eR(x) u′R(x) = exp{iα y2R}uR(x),
d′R(x) = exp{iα y3R} dR(x), (1.18)

where UL ≡ exp{iσi

2
αi} is the SU(2) transformation acting on doublets EL and QL

and σi the Pauli matrices with i = 1, 2, 3. The parameters y1L, y2L, y1R, y2R, y3R are
called hypercharges and are analogous to phase transformation in QED. On the other
hand UL is non-Abelian as in the QCD case. Requiring the Lagrangian of eq. (1.17)
to be invariant under local gauge transformations, the recipe is already known. The
derivatives transform into covariant derivatives and new fields that represent gauge
bosons are introduced as follows:

Dµ ≡ ∂µ − i gAa
µτ

a − i
1

2
g′Bµ, (1.19)

where Aa
µ and Bµ represent the SU(2) and U(1) gauge bosons respectively, τa = σa/2

and g and g′ are the coupling constants of SU(2) and U(1) fields. As in the case of
QED and QCD the fields Bµ and Aa

µ have the following transformation:

B′
µ = Bµ +

1

g′
∂µβ(x),

A
′a
µ = Aa

µ +
1

g
∂µα

a(x) + ǫa b cAb
µ α

c(x). (1.20)

Constructing the field strength tensors for Bµ and Aa
µ respectively,

Bµν = ∂µBν − ∂νBµ,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + g ǫa b cAb

µA
c
ν , (1.21)
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we can see that they remain invariant under the transformations of eq. (1.20). Subse-
quently we can write down the properly transformed kinetic terms for Aa

µ and Bµ and
the final Lagrangian reads:

L = −1

4
F µν
a F a

µν −
1

4
BµνBµν + EL(i /D)EL + eR(i /D)eR +

+QL(i /D)QL + uR(i /D)uR + dR(i /D)dR. (1.22)

The last term of F µν , that constitutes its non-Abelian part, generates cubic and quar-
tic self-interactions among gauge fields that have the same SU(2) coupling g. The
Lagrangian above describes a set of massless fermions. Any mass term for fermionic
fields is forbidden by global gauge invariance. For example any term of the form
−me(eL eR + eR eL), is not allowed because the fields eL and eR belong to different
SU(2) representations and have different U(1) couplings. Also any mass term for the
gauge bosons is also forbidden since it violates the local gauge invariance. Therefore this
Lagrangian describes a completely massless set of particles. However, this Lagrangian
is far from reality. Since the weak force does not represent a long range interaction,
the physical W± and Z0 bosons should be massive. On the other hand, although it
can describe the fermionic sector in high energies, where fermions can be considered
massless, the description fails at low energies where fermions appear clearly massive.
In order to generate masses we need to break the gauge symmetry somehow. For this,
it is necessary to introduce a new mechanism that respects the gauge invariance of the
Lagrangian, but generates stable minimal energy states that are transformed under
gauge transformations in a specific way. Choosing one of these states, it is said that
the symmetry is spontaneously broken.

1.4.4 Spontaneous Breaking of a global gauge Symmetry

Let consider first the notion of spontaneous breaking of a global gauge symmetry. For
this we introduce a complex scalar field φ, with Lagrangian:

L = ∂µφ
†∂µφ− V (φ), V (φ) = µ2φ†φ+ λ(φ†φ)2. (1.23)

This Lagrangian is invariant under the global transformation φ′ = exp(i α)φ. The
parameter λ is chosen to be positive in order the potential posses a stable ground
state. For the other parameter µ2 there are two possibilities: µ2 > 0 where the only
ground state corresponds to φ0 = 0 and is stable, and µ2 < 0 where an unstable state
appears at φ0 = 0 and a stable minimum appears for field configurations satisfying

the relation | φ0 |=
√

−µ2

2λ
≡ v√

2
, where v is the vacuum expectation value. In fact,

there is an infinite number of degenerate states wich are related to each other via the
following U(1) transformation φ = v√

2
exp(iθ). We can choose everyone of this states.

For simplicity we choose θ = 0 and the symmetry is spontaneously broken. In order to
investigate the particle spectrum we have to move in a perturbative way around the
vacuum. We can decompose the initial field φ as follows φ(x) = 1√

2
(φ1(x) + i φ2(x)),

and using the shift ϕ1 ≡ φ1 − v along φ1 direction and ϕ2 ≡ φ2 along the φ2 direction,
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we obtain φ(x) = 1√
2
(v + ϕ1(x) + i ϕ2(x)). In terms of the new fields ϕ1 and ϕ2 the

Lagrangian above has the following form:

L =
1

2
∂µϕ1 ∂

µϕ1 +
1

2
∂µϕ2 ∂

µϕ2 −
µ2

2

(
(v + ϕ1)

2 + ϕ2
2

)
− λ

4

(
(v + ϕ1)

2 + ϕ2
2

)2

=

=
1

2
∂µϕ1 ∂

µϕ1 +
1

2
∂µϕ2 ∂

µϕ2 − λ v2ϕ2
1 − 0ϕ2

2 −

− λ
(
v ϕ3

1 + v ϕ1 ϕ
2
2 +

1

2
ϕ2
1 ϕ

2
2 +

1

4
(ϕ4

1 + ϕ4
2)−

v4

4

)
=

=
[1
2
∂µϕ1 ∂

µϕ1 − λ v2ϕ2
1

]
+
[1
2
∂µϕ2 ∂

µϕ2 − 0ϕ2
2

]
+ interaction terms, (1.24)

where the relation µ2 = −λv2 has been used. Comparing the last line of the Lagrangian
above with the Lagrangian of a scalar particle L = 1

2
∂µφ ∂

µφ− 1
2
m2 φ2, with mass m, it

is clear that eq. (1.24) describes a massive scalar particle ϕ1 with mass mϕ1
=

√
2λv2

and a massless scalar ϕ2. The spontaneous breaking of the global gauge symmetry has
generated massless excitations, a result related to Goldstone’s theorem [32]: for each
broken generator of a continuous symmetry there appears a massless scalar particle.

1.4.5 Spontaneous Breaking of a local gauge Symmetry. The
Higgs mechanism. Gauge boson masses

In this section we will investigate what happens when a local gauge symmetry is spon-
taneously broken. Local gauge invariance requires the Lagrangian to be invariant under
the transformation φ′(x) = exp(i α(x))φ(x) and also, through the covariant derivative,
introduces gauge fields that have a special transformation rule. We are interested for
the case of SU(2)L ⊗ U(1)Y Lagrangian, since we expect the spontaneous breaking of
local gauge symmetry will generate mass terms for weak gauge bosons. In this point
we introduce the Higgs boson field, a doublet of complex scalar fields:

φ(x) =

(
φ+(x)
φ(0)(x)

)
(1.25)

and eq. (1.23) reads:

L = (Dµφ
†)(Dµφ)− µ2φ†φ− λ (φ†φ)2, (1.26)

where Dµφ =
(
∂µ − i gAa

µτ
a − i1

2
g′Bµ

)
φ and as previously µ2 < 0 and λ > 0. This

Lagrangian is invariant under the local gauge transformation φ′(x) = exp(i α(x))φ(x)
and those described in eq. (1.20). The potential term guarantees that there is an

infinity of degenerate ground states located at |φ0|2 =
√

−µ2

2λ
. We can choose one of

them by parametrizing the field φ ,“ala Kibble”, as follows:

φ(x) = exp{iσ
i

2
θi(x)}

1√
2

(
0

v + h(x)

)
, (1.27)
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where θi(x) and h(x) are real fields. We can simplify the situation by working in the
unitary gauge where θi(x) = 0. This is allowed by the local SU(2) invariance of the
Lagrangian since we can rotate away any θi(x) dependence. The potential term in
eq. (1.26) will generate self-interactions of Higgs boson and also a mass term for it.
The gauge boson mass terms should come from the first term of eq. (1.26) evaluated
at the scalar field expectation value. We work out only the relevant terms:

∆L = Dµφ
†Dµφ ∼ 1

2
(0, v)

(
gAa

µτ
a +

1

2
g′Bµ

)(
gAb µτ b +

1

2
g′Bµ

)(
0
v

)
. (1.28)

Considering that τa = σa/2 and using the explicit form of Pauli matrices (for properties
of Pauli matrices see Appendix A), we find:

∆L =
1

2

v2

4

[
g2(A1

µ)
2 + g2(A2

µ)
2 + (−gA3

µ + g′Bµ)
2
]
. (1.29)

It is convenient to define the following linear combinations of fields:

W±
µ =

(
A1

µ ∓ iA2
µ

)

√
2

, Z0
µ =

(
gA3

µ − g′Bµ

)

√
g2 + g′2

, Aµ =

(
g′A3

µ + g Bµ

)

√
g2 + g′2

. (1.30)

Now eq. (1.29) takes the form:

∆L =
1

2

(g v
2

)2
(W+

µ )†W+µ +
1

2

(g v
2

)2
(W−

µ )†W−µ +
(g2 + g′2

2

)
(
v

2
)2Z0

µ Z
0µ + 0AµA

µ. (1.31)

From this expression it is clear that the combinations W±
µ acquire a mass mW = g v

2
,

the Z0
µ acquires a mass mZ0 = v

2

√
g2 + g′2, since in the Lagrangian a general mass

term for the massive gauge bosons has the form 1
2
m2 VµV

µ. The last combination Aµ

remains massless. The W±
µ and Z0

µ are identified with the weak gauge bosons and the
field Aµ with the photon. In this way it is evident that the spontaneous breaking of a
local gauge symmetry has generated massive gauge bosons and also a massless particle
as well. In the general case of considering the coupling of vector fields to fermions the
covariant derivative takes the form:

Dµ = ∂µ − ig Aa
µT

a − ig′Y Bµ, (1.32)

where T a = 1
2
σa and Y the U(1) hypercharge. We are interested in writing this

expression as a function of mass eigenstate fields W±, Z0 and Aµ. First we define
T± = T 1 ± i T 2 = 1

2
(σ1 ± i σ2). Therefore the expression for the covariant derivative

becomes:

Dµ = ∂µ − i
g√
2

(
W+

µ T
+ +W−

µ T
−
)
− i

1√
g2 + g′2

Z0
µ

(
g2T 3 − g′2Y

)
−

−i g g′√
g2 + g′2

Aµ

(
T 3 + Y

)
. (1.33)

In this expression it is clear that the massless gauge boson couples to the gauge genera-
tor T 3+Y . This leaves the vacuum unaffected. Since the gauge boson Aµ corresponds
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to the photon, the mediator of electromagnetism, we conclude that the symmetry re-
lated to the electromagnetism leaves the vacuum invariant, which has as a consequence
the presence of the massless photon. In order to simplify the eq. (1.33) further, we
define the factor next to Aµ field as the electron charge e = g g′√

g2+g′2
and also identify

the quantum number of the electric charge as Q = T 3 + Y . In terms of T 3 and Q, the
term next to Zµ field in eq. (1.33), takes the form g2T 3−g′2Y = (g2+g′2)T 3−g′2Q and

also define cos θw = g√
g2+g′2

and sin θw = g′√
g2+g′2

, where θw is the weak mixing angle.

After the above definitions and abbreviations eq. (1.33) is written in a simplified form:

Dµ = ∂µ − i
g√
2

(
W+

µ T
+ +W−

µ T
−
)
− i

g

cos θw
Z0

µ

(
T 3 − sin2 θw

)
− ieAµQ. (1.34)

We can use the angle θw to express different useful relations as for example the
parametrization of mixing between (Z0, A) and (A3, B) gauge fields through the change
from one basis to the other as follows:

(
Z0

A

)
=

(
cos θw − sin θw
sin θw cos θw

)(
A3

B

)
, (1.35)

or the relation e = g sin θw, between the electron charge and SU(2) coupling, or finally
the relation between the W and Z0 masses: mW = mZ0 cos θw. From the last relation
we can define the ρ parameter:

ρ ≡ m2
W

m2
Z0 cos2 θw

, (1.36)

and ρ = 1 at the lowest order of perturbation theory. The experimental measurements
of mW , mZ0 and cos θw confirm this relation. It is interesting that the total number
of degrees of freedom remains the same before and after symmetry breaking. Before
breaking there where four massless gauge fields (A1, A2, A3, B) each one with two de-
grees of freedom due to the two possible transverse polarizations and four real scalar
fields (the components of the complex Higgs field). In total 4× 2 + 4 = 12 degrees of
freedom. After spontaneous symmetry breaking appear three massive gauge bosons,
each one with three degrees of freedom, a massless photon with two degrees of freedom
and the remaining Higgs field with one degree of freedom, in total 3×3+2+1 = 12. So
far we have described how the introduction of a scalar field with non-zero expectation
value allows the system to reach in a spontaneously broken state and this mechanism
generates the gauge boson masses and a massless photon. But this mechanism provides
a mass term for the Higgs boson, the quantum of Higgs field, describes Higgs boson’s
self-interaction and interactions of Higgs boson and gauge bosons, and finally explains
how fermions acquire their mass.
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1.4.6 Interactions between fermions and gauge bosons.
Fermion masses

So far the model we have described, contains massless fermions, since any mass term for
fermions is forbidden by the gauge invariance. For example, a term in the Lagrangian
of the form ∆L = −me(eLeR+ eReL) contains fields that have different transformation
properties under SU(2) or U(1) transformation groups. This information is encoded
in the fermionic part of the Lagrangian in eq. (1.22):

∆Lf ∼ EL(i /D)EL + eR(i /D)eR +QL(i /D)QL + uR(i /D)uR + dR(i /D)dR, (1.37)

where in general Dµ = ∂µ − igAaτa − ig′Y Bµ. Since the different fermionic fields in
the Lagrangian above belong to different representations, they have different values for
the hypercharge Y . Using the relation Q = T 3 + Y , the hypercharge is chosen in such
a way to reproduce the correct electric charge. For example, for right handed fermions
the hypercharge coincides with the electric charge since in this case T 3 = 0. For the
left handed fermions it is determined from the relation Y = Q − T 3, where we have
considered that T 3 = ±1/2 for the upper and lower component of fermionic doublet
respectively. Therefore the left handed doublets:

EL =

(
νe
e−

)

L

, QL =

(
u
d

)

L

, (1.38)

have hypercharge Y = −1/2 and Y = +1/6 respectively. We can use the expression of
covariant derivative as a function of mass eigenstates gauge fields, in order to express
eq. (1.37) as follows:

∆Lf ∼ EL(i/∂)EL + eR(i/∂)eR +QL(i/∂)QL + uR(i/∂)uR + dR(i/∂)dR +

+ g
(
W+

µ Jµ+
W +W−

µ Jµ−
W + Z0

µ J
µ
Z

)
+ eAµJ

µ
EM , (1.39)

where the corresponding currents are:

Jµ
W+ =

1√
2

(
νLγ

µeL + uLγ
µdL

)
,

Jµ
W− =

1√
2

(
eLγ

µνL + dLγ
µuL

)
,

Jµ
EM = eγµ(−1)e+ uγµ(+

2

3
)u+ dγµ(−1

3
)d, (1.40)

and

Jµ
Z =

1

cos θW

[ 1

2
νLγ

µνL +
(
− 1

2
+ sin2 θW

)
eLγ

µeL + sin2 θW eRγ
µeR +

+
(1
2
− 2

3
sin2 θW

)
uLγ

µuL +
(
− 2

3
sin2 θW

)
uRγ

µuR +

+
(
− 1

2
+

1

3
sin2 θW

)
dLγ

µdL +
(1
3
sin2 θW

)
dRγ

µdR

]
. (1.41)
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Let see now how the introduction of the Higgs field produces a mass term for fermions.
The scalar field must have Y = 1/2 and should be a spinor under SU(2) in order to
generate the correct gauge boson masses. It is interesting that the same scalar field,
with these quantum numbers plays a crucial role in writing down a coupling term in
the Lagrangian invariant under SU(2)L ⊗ U(1)Y of the form:

∆Le = −λe (EL · φ eR + eR φ
† · EL), (1.42)

where λe is a new dimensionless parameter. We notice that the hypercharges of the

different fields sum to zero. If the scalar field has the form φ = 1√
2

(
0

v + h

)
then

eq. (1.42) is written:

∆L =
−λe√

2

(
(νeL , eL) ·

(
0

v + h

)
eR + eR(0, v + h) ·

(
νeL
eL

))
=

=
−λe√

2
[v(eLeR + eReL) + h(eLeR + eReL)] =

= −mee e−
λe√
2
h e e, (1.43)

where me =
λe v√

2
and eL eR + eR eL = e e. From this expression it is clear that except

of the fermionic mass term a coupling term between the Higgs boson and fermions has
been generated. The eq. (1.42) seems to contribute to the mass generation of the lower
component of the fermion doublet. In order to give mass to the upper component we
write down the following SU(2)L ⊗ U(1)Y Lagrangian:

∆Lu = −λu
(
QL · φ̃c uR + uR (φ̃c)† ·QL

)
, (1.44)

where φ̃c = iσ2φ∗ = 1√
2

(
v + h
0

)
. In this case the Lagrangian in eq. (1.44) takes the

form:

∆Lu =
−λu√

2
(v + h)

(
uL uR + uR uL

)
= −muu u−

λu√
2
huu, (1.45)

where mu = λu v√
2
is the mass term for the u quark and uL uR + uR uL = u u.

1.4.7 Higgs boson: mass, production and decay

By working out the terms in the potential part of eq. (1.26) for φ = 1√
2

(
0

v + h

)

and using the relation −µ2 = λ v2 we find for the Higgs boson mass mH =
√
2λv.

The vacuum expectation value is v ≈ 246GeV as it is evaluated from muon decay
processes by taking into account the Fermi coupling and the relation v = (

√
2GF )

−1/2.
Also there appear interaction terms of the form −λv h3 − λh4

4
(some constant terms

have been neglected) giving rise to third and fourth power self-interactions. From the
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kinetic part of eq. (1.26) one also finds the interaction terms between the Higgs boson
and weak gauge bosons. Manipulating the relevant terms one obtains:

∆Lkin. ∼
1

2
∂µh ∂

µh+
[
m2

WW
µ+

W−
µ +

1

2
m2

ZZ
µZµ

](
1 +

h

v

)2

. (1.46)

From this expression we conclude that there are four different couplings of the Higgs
field to the gauge bosons (the triple and quartic interaction with each one gauge boson).
There is no direct coupling of the Higgs boson to photon, since, as we know, the photon
couples only to charged particles and the Higgs boson is a neutral one, or alternatively
the Higgs boson couples to massive particles and the photon is massless. However, there
appears a loop induced hγγ coupling involving fermions or W -bosons in the loop. On
the other hand the coupling to the massive gauge bosons has the characteristic of being
proportional to gauge boson’s mass squared as it is clear from eq. (1.46).

At this point we want to discuss about Higss boson’s production and decay. In
previous sections we recognized the major role of the introduction of a scalar field in
the theory, since it provides the framework where a mechanism that generates massive
gauge bosons and also gives mass to fermions takes place. The quantum representative
of this scalar field is the Higgs boson. The importance of the existence of the Higgs
boson has rendered the search for this particle, one of the fundamental goals in physics
last decades. These searches have been realized in Tevatron and LHC and seems to
have given encouraging results with the discovery of a new boson which is at very
high possibility, identified with the Higgs boson of the Standard Model [4, 5]. Before
discussing about production and decay of the Higgs boson, let us provide some general
information about the LHC. The main purpose of this accelerating machine is to shed
light in some fundamental questions in modern physics:

1. Are the masses of elementary particles produced by the Higgs mechanism?

2. Is the recently discovered boson identified with the Higgs boson?

3. Are there supersymmetric partners of the SM particles ?

4. What is the possibility that extra dimensions exist?

5. What is the nature of dark matter?

6. Why the fundamental interactions have so different magnitude (the hierarchy
problem)?

7. What is the deeper cause of matter-antimatter asymmetry?

8. What is the neutrino mass?

This thesis deals with points 1, 2 and 5. From the technical point of view, the LHC’s
“operating system” consists of a large underground tunnel (∼ 27 km circumference),
where two proton beams travel in opposite directions in extreme conditions (a pressure
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of order ∼ 10−13 atm, 1.9 K temperature and ∼ 8.3 T magnetic field). After acceler-
ating in very high speeds, the two beams collide and the products of this collision are
detected and analyzed. Each beam has a 7 TeV energy, giving a 14 TeV total collision
energy. During the collision are created the conditions where some of the questions
above will possibly find their answer.

After this short parenthesis about LHC, we return again to Higgs boson’s pro-
duction and decay features. The Higgs boson’s production mechanism, at LHC, is
dominated by gluon fusion, vector boson fusion and associative production with W
boson or a top quark pair. Especially the gluon fusion has a major contribution to
the Higgs boson’s production, since the involved top quarks have a large coupling to
Higgs boson due to their large mass. The Higgs boson, after its production is unsta-
ble and for a mass of about 126 GeV the Standard Model prediction is that its life
time is about 1.6 × 10−22s. The Higgs boson can decay through different channels
with different probabilities. In general, more favorite are channels that contain heavy
fermion-antifermion pairs, since the strength of interaction is proportional to fermion
mass. Since for a Higgs boson with mass 126 GeV, the decay to top-antitop quark pair
is forbidden (because mH ≤ 346 GeV which is twice the mass of top quark), the most
probable decay channel contains a bottom-antibottom quark pair. An other alterna-
tive is the Higgs boson to decay into W and Z0 gauge bosons, where each one of them
subsequently decays into a pair of leptons. The products of these subsequent decays,
provide information about the properties of the initial Higgs boson. The W boson de-
cays into quarks which in general are very difficult to distinguish from the background,
or decays into charged leptons and neutrinos that also have a detecting difficulty due
to neutrinos very low detectability especially in collision experiments. On the other
hand the Z0-boson decays into a pair of charged fermions that in general are easy to
detect. A third possibility is the Higgs boson to decay into a pair of gluons or a pair
of photons. These two decay modes are indirect since the Higgs boson does not posses
color or electric charge. It can be realized through loop induced interactions where
are involved W -bosons or virtual heavy fermions. The case where the final particles
are gluons, again expresses a difficulty due to the background. However the case of
final photons is a very interesting process since the energy and momentum of these
photons can be measured precisely and therefore this process plays a crucial role to
the mass reconstruction of the initial decaying particle. In Chapter 4 we investigate an
interesting behaviour of the last possibility where the loop involved particles are virtual
W -bosons. The decay mode h → γγ has definitively contributed to the identification
of the recently discovered particle at the LHC, with the Higgs boson of the SM [4,5].

1.5 Some selected topics

In what follows, we describe some selected topics related to the concepts and problems
that we study in this thesis. This description serves as an introduction to issues that we
analyze in more detail in the following Chapters. In particular we briefly describe some
general aspects about the dark matter, chiral anomalies and dimensional regularization.
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1.5.1 General aspects about the dark matter

There is an increasing number of facts about the existence of dark matter. It is believed
that dark matter is a type of matter that does not emit or absorb electromagnetic
radiation and its direct effects on the visible matter and radiation have gravitational
nature. Among evidence about the existence of dark matter we refer the attempt
to explain the rotational velocities of stars in the Milky Way or the evidence for the
“missing mass” in the velocities of galaxies in clusters by Fritz Zwisky [10, 11], the
“missing mass” in the explanation of rotational speed of galaxies by Vera Rubin in 1960-
1970 [12, 13], the gravitational lensing effects in the background radiative structures,
the distribution of anisotropies in the cosmic microwave background [14]. According
to cosmological data our universe contains 4.9% ordinary matter, 26.8% dark matter
and 68.3% dark energy [15].

This is a considerable percentage and has motivated several theoretical and experi-
mental groups to focus on the search for dark matter [15–25]. Although the corpuscu-
lar nature of dark matter is still unknown, there are theories, such as supersymmetry
or other extensions of the Standard Model of particle physics that provide possible
candidates from a variety of subatomic particles (neutralinos, axions, heavy sterile
neutrinos). The nature of dark matter however can not be baryonic. If this were
the case then the cosmic microwave background will have a completely different form
and also there would have been a conflict with the data about the abundance of light
elements created during the big-bang nucleosynthesis. On the other hand, very light
particles are also excluded since they are relativistic at early Universe and then es-
cape rapidly from low density condensations. Any electric charge or magnetic moment
are also forbidden since this would have allowed interactions with the photon-baryon
plasma before recombination and clearly a different microwave background would have
appeared. However, there are restrictions on this and we study models where dark
sector gauge boson Xµ mixes to photon Aµ. The most accepted candidates are the
WIMPs, (weakly interacting massive particles) [26] that interact with the rest of the
ordinary matter via weak (possibly) and gravitational interactions. Since both these
interactions are very weak, the detection of dark matter is extremely difficult, at least
based on the detecting abilities that we possess so far.

There are two main kinds of detecting strategies: direct and indirect WIMP detec-
tion. The direct detection is based on the analysis of low background recoiling nuclei
caused by the WIMP-nucleus scattering. The effectiveness of this method depends on
the local dark matter density and velocity distribution. Two are the main techniques
to detect recoiling nuclei: cryogenic detection, where the heat produced when a par-
ticle hits an atom in a crystal (Si, Ge) is measured and scintillator detection, where
scintillation light is produced when a particle collides with the atoms in a liquid noble
gas (Xe,Ar). The indirect detection techniques are based on the experimental search
for particles that WIMPs could annihilate. The final particles may be photons, neu-
trinos, electrons, positrons or other Standard Model particles. Since the annihilation
rate is proportional to the square of the WIMPs density, the ideal places to search for
dark matter annihilation are dark matter dense objects (clusters of galaxies, galaxies
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halos, dwarf galaxies) [27–29]. An alternative detecting choice provide particle collid-
ers. Large Hadron Collider (LHC) is an ideal place to search for physics beyond the
Standard Model. Future experiments in the LHC may be able to search for WIMP’s
production in proton-proton collisions. In principle, during a p−p collision, quarks and
gluons may annihilate in other colored particles (squarks, gluinos) and these particles
may decay to WIMPs. Since the WIMP interacts extremely weak with the ordinary
matter, it can be detected indirectly as missing energy and momentum.

However, alternative theories have been developed to explain the astronomical ob-
servations. Their philosophy is not to include large amounts of undetermined matter,
but to modify laws of gravity.

1.5.2 Chiral anomalies

In quantum field theory there are phenomena that have not analog in classical theories.
Their dynamics is affected completely by quantum effects. Such a problem is the
decay rate of neutral pion π0 → γγ that leads to the concept of symmetry breaking
anomalies. Here we will discuss the symmetry breaking of chiral anomalies. Chiral
symmetry is a possible symmetry of the Lagrangian where the left and right handed
fields transform independently. The massless Dirac Lagrangian has a symmetry related
to the conservation of left and right handed fermions, leading to the conserved axial
current jµ5 = Ψγµγ5Ψ. In the massless case it is ∂µj

µ5 = 0. However, as we will see
this equation is affected by quantum corrections. In order to understand this fact let
us calculate the matrix element that corresponds to the creation of two photons by
this axial current jµ5. The matrix element for this process is :

∫
d4x e−iq·x〈k1k2|jµ5(x)|0〉 = (2π)4δ(4)(k1 + k2 − q) ǫ∗λ(k1) ǫ

∗
ν(k2)Mµνλ(k1, k2), (1.47)

where k1, k2 are the momenta of the outgoing photons, ǫ∗λ(k1), ǫ
∗
ν(k2) their polarization

vectors and Mµνλ the matrix element for the process shown in Fig. 1.2. The virtual

Figure 1.2: Feynman diagrams contributing to two-photon matrix element of the di-
vergence of the axial current.

particles in the loop are fermions that we assume massless. For the contribution from
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the first diagram one obtains:

Mµνλ
1 = −1(−ie)2

∫
d4p

(2π)4
Tr[γµγ5

i (/p− /k1)

(p− k1)2
γλ
i /p

p2
γν
i (/p+ /k2)

(p+ k2)2
]. (1.48)

The minus sign corresponds to the fermion loop. From the second diagram one obtains
the same result after interchanging (k1, λ) with (k2, ν). If in eq. (1.47) one takes the
divergence, the result is similar to doting eq. (1.48) with iqµ. In order to proceed we
use the following identity:

qµγ
µγ5 = (/p+ /k2 − /p+ /k1)γ

5 = (/p+ /k2)γ
5 + γ5(/p− /k1), (1.49)

where we have used the fact that qµ = kµ1 + kµ2 and the anti-commuting properties of
gamma matrices ( for properties of gamma matrices see Appendix A). Now, eq. (1.48),
after doting with iqµ and using the identity above, takes the form:

i qµMµνλ
1 = e2

∫
d4p

(2π)4
Tr[γ5

(/p− /k1)

(p− k1)2
γλ

/p

p2
γν + γ5γλ

/p

p2
γν

(/p+ /k2)

(p+ k2)2
]. (1.50)

Shifting the momentum of integration p → p + k1 in the first integral and using the
cyclic property of trace and the anti-commutation property of γ5 in the second integral,
the eq. (1.50) takes the form:

i qµMµνλ
1 = e2

∫
d4p

(2π)4
Tr[γ5

/p

p2
γλ

(/p+ /k1)

(p+ k1)2
γν − γ5

/p

p2
γν

(/p+ /k2)

(p+ k2)2
γλ]. (1.51)

This expression is obviously antisymmetric under (k1, λ) → (k2, ν). Therefore, the
contribution from the second diagram exactly cancels this result. Finally it seems
that the total result is zero. But in the argument above there is something illegal.
As we can see, the integrals in eq. (1.50) are divergent and the shift in divergent
integrals is not allowed in general. One method to evaluate the integrals in eq. (1.50)
is to use dimensional regularization. In principle, in the framework of dimensional
regularization, any integral is performed in d dimensions and the physical result is
obtained taking the limit d→ 4. But the anti-commutation relations of γ5 with γµ in
d dimensions should be used carefully. In their original paper t’Hooft and Veltman used
the definition γ5 = iγ0γ1γ2γ3 [33]. From this definition it is clear that γ5 anticommutes
with γµ for µ = 0, 1, 2, 3 and commutes with γµ with other values of µ. In eq. (1.50) the
external momenta k1 and k2 have at lest one non-zero component for d = 0, 1, 2, 3, but
the internal momentum p has components in all dimensions. We can use the following
decomposition p = p|| + p⊥, where p|| has zero components in d− 4 dimensions and p⊥
has zero components in d = 0, 1, 2, 3. Since γ5 commutes with γµ in d− 4 dimensions
we can write the following identity:

qµγ
µγ5 = (/p+ /k1)γ

5 + γ5(/p− /k2)− 2γ5/p⊥. (1.52)

Since in the framework of dimensional regularization the shift is allowed, the first two
terms after adding the contribution from the second diagram, vanish (we use the same
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argument as above). However there is something that survives; the contribution from
the third term. This contribution in eq. (1.48) is :

i qµMµνλ
1 = e2

∫
d4p

(2π)4
Tr

[
− 2γ5/p⊥

(/p− /k1)

(p− k1)2
γλ

/p

p2
γν

(/p+ /k2)

(p+ k2)2

]
. (1.53)

In order to evaluate this integral we can introduce Feynman parameters x, y, and shift
the integration variable p→ p+x k1−y k2. The denominator takes the form (p2−∆)3,
where ∆ is a function of k1, k2 and x, y. In the numerator, terms with odd powers
of p vanish due to symmetric integration. We can eliminate terms that give a non-
zero result. This contribution comes from a term containing /p⊥/p⊥. Then, we have to
evaluate the integral:

∫
d4p

(2π)4
/p⊥/p⊥

(p2 −∆)3
. (1.54)

Using the fact that /p⊥/p⊥ = p2⊥ → (d−4)
d

p2 and standard dimensional regularization
integrals we find:

i

(4π)d/2
(d− 4)

2

Γ(2− d/2)

Γ(3)∆2−d/2
→ −i

2 (4π)2
, (1.55)

when d→ 4. After a little standard algebra in eq. (1.53) we obtain:

i qµMµνλ
1 = e2

( −i
2 (4π)2

)
Tr[2 γ5(−/k1)γ

λ/k2γ
ν ] =

e2

4 π2
ǫαλβνk1αk2β . (1.56)

The contribution from the second diagram is the same. Therefore the final result is:

〈k1, k2|∂µjµ 5(0)|0〉 = − e2

2 π2
ǫανβλ(−i k2α)ǫ∗ν(k2)(−ik1β)ǫ∗λ(k1). (1.57)

This equation shows an anomalous non-conservation of the four-dimensional axial cur-
rent. It is correct to all orders of perturbation theory and does not receive any other
radiative correction [30,31]. This is a simple QED example where a chiral current ap-
pears a problem at one loop corrections. In general, theories that contain gauge bosons
that couple to axial currents, are gauge invariant, only if the anomalous terms disap-
pear. This is possible if the fermionic quantum numbers of all fermions are chosen in a
suitable way, or if new particles are introduced in the particle spectrum of the theory.
For three gauge bosons Aa

µ, A
b
ν and A

c
λ the anomalous term is proportional to the quan-

tity Tr[γ5 ta{tb, tc}], where the trace is taken over all fermions and ta, tb, tc are group
representation matrices. The anticommutator is related to the sum of two diagrams
where internal fermions circle in opposite directions. The γ5 expresses the fact that
the anomaly comes from chiral currents. Gauge theories satisfying the condition that
the trace above is zero, are called anomaly free. In Chapter 3 we present a systematic
method in order to generalize this result in the case of a triple gauge boson vertex.
We use a different approach to derive the generalization of the result above. Instead
of working in d dimensions, we prefer to perform the calculation in d = 4 dimensions
and introduce some arbitrary vectors to handle the divergencies that appear during
the calculations (for details about these calculations see Appendix H).
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1.5.3 Dimensional Regularization

Dimensional Regularization is a method that enables us to evaluate integrals related to
calculations that involve Feynman diagrams containing loops. In fact it is a set of self-
consistent formal rules that respect the gauge invariance and the renormalizability of a
theory. The method has been developed in early 70s by t’Hooft and Veltman [33]. The
basic idea behind dimensional regularization is the modification of divergent integrals
that appear often in calculations in such a way that the infinities that they involve, are
isolated from their finite parts. The main ingredient of this modification is the analytic
continuation of the integral

∫
dd pf(p), which is considered a function of the complex

parameter d, from a region that it converges to a meromorphic1 function of all values
of d. In general the parameter d is a complex number, not necessarily identified with
the number of space-time dimensions. This identification occurs only in the case that
d is a positive integer number. The following axioms constitute the foundations that
dimensional regularization is based on:

1. Linearity: For every a and b complex numbers,

∫
ddp [af(p) + bg(p)] = a

∫
ddp f(p) + b

∫
ddp g(p). (1.58)

2. Scaling: For any number s,

∫
ddp f(sp) = s−d

∫
ddp f(p). (1.59)

3. Translation Invariance: For any vector q,

∫
ddp f(p+ q) =

∫
ddp f(p). (1.60)

In order to obtain the result that corresponds to the physical case, one should take the
limit d → 4 in the dimensional regularization result. In exactly d = 4, some surface
integrals appear and the obtained result is not gauge invariant. This case requires
a special treatment and it is discussed in more detail in Chapter 4. Also, some d-
dimensional integrals and mathematical tricks relevant to dimensional regularization,
are presented in Appendix A. Although we have used a different method to perform
the four-dimensional integrals especially in Chapters 3 and 4 (shifting the integration
variable by arbitrary constant vectors and requiring the result to be gauge invariant),
we have used the dimensional regularization method to check our results in several
intermediated calculational steps.

1A function defined on an open subset D of the complex plane, is called meromorphic, if it is
differentiable on all D except a set of isolated points, the poles of this function, where there exists a
Laurent series.



Chapter 2

Direct Detection of Dark Matter

Motivated by cosmic ray experimental results, in this Chapter we propose a scenario
where a secluded dark matter particle annihilates, primarily, into Standard Model lep-
tons through a low mass mediator particle. We consider several varieties of this scenario
depending on the type of mixing among gauge bosons and we study the implications
in direct dark matter experiments for detecting low energy recoiling electrons. We find
significant event rates and time modulation effects, especially in the case where the
mediator is massless, that may be complementary to those from recoiling nuclei. This
Chapter is based on the published work [35].

2.1 Introduction

The analysis of the positrons excess (vs electrons) seen in cosmic ray spectra from
PAMELA [16,17] in the energy region above 10 GeV confirming previous results from
HEAT [18, 19] and AMS-01 [36] experiments together with results from FERMI [20]
and HESS [21] collaborations seems to suggest the presence of a WIMP that annihilates
into leptons without any indication of annihilation into (p, p) pairs or other hadrons
(see Refs. [37,38] for relevant analysis). This is also reinforced by ATIC [22] experiment
which reports excess of electron plus positron cosmic ray events in the energy region
300 . E . 800 GeV and also by signals fromWMAP and EGRET [39–41] experiments.
These phenomena can be explained by a scenario, originally proposed in ref. [42] - a
subset of the so called secluded Dark Matter scenarios [43] - involving a new gauge boson
Xµ [45]1, which couples to Standard Model (SM) particles and the WIMP through
kinetic vector boson mixing with the following properties [46–48] :

2me . mX . mχ β . mχ αDM , (2.1)

where mχβ is a typical non-relativistic WIMP momentum and velocity β ∼ 10−3

inside the galactic halo and αDM is the dark matter coupling. It has been shown
that if eq. (2.1) is satisfied then dark matter annihilation to leptons inside the halo is

1In earlier models [44] of secluded dark matter, WIMPs could be annihilated into new light scalar
and gauge bosons.

25
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enhanced by a Sommerfeld factor of O(αDM/β) [49], while annihilation to protons is
simply kinematically forbidden. A typical range of parameters that are going to be
exploited in our analysis and satisfy eq. (2.1) are : mX = 0.1 − 1 GeV, αDM = αem

and mχ = 0.1 − 1 TeV. The new force mediated by the X-boson is a long range force
indeed. We must note here that there is a choice of another viable possibility with an
even lighter mediator in MeV range that has been studied in ref. [50]. Our results for
detecting low energy electrons are even more pronounced in this case.

There is also a possibility for the gauge boson mediator Xµ that couples to the SM
gauge bosons through a mass mixing matrix in a generalized gauge invariant way. These
models are frequently called Stückelberg models [51,52] and are denoted as model type
II in our classification. A characteristic of these models is that the electromagnetic
current couples to the dark sector through a massless pole identified as the physical
photon. As we shall see, this results in considerable and comparable rates in both
nucleon or electron recoiling experiments. Alternatively, it could be that there is a
symmetry that renders dark matter particles leptophylic [53–57]. This symmetry is
spontaneously broken, resulting in a massive gauge boson Xµ that couples directly to
both leptons and WIMP at tree level. Again Sommerfeld enhancement dictates the
mass of the X-boson to be in the GeV (or sub GeV) range. This is the model III that
is considered in section 2.2.

Within the three model categories mentioned above we want :

1. to study the implications of this new force carrier on both traditional nucleon
recoil, and non traditional electron recoil direct dark matter searches, and,

2. to suggest new dark matter experiments involving the detection of electrons scat-
tered by this carrier providing a direct link to observed cosmic ray anomalous
electron/positron events.

So far there is a dedicated analysis for electron recoils in DAMA experiment [58]
with energies approximately 5 KeV. Our analysis investigates recoiling electrons with
energies as low as 10 eV, and suggests an experimental method on how to reach such
low energies. It is therefore complementary to the analysis of ref. [58].

In what follows we present a field theory setup which helps to categorize three
representative model examples that have been studied in detail and we present event
rate predictions for conventional nucleon recoil detection for the models studied. Also
we deal with the not so familiar methods of electron recoil detection rates together
with time modulation effects and make a proposition of a prototype experiment to be
exploited in discovering low energy electrons ejected from WIMP + atom collisions.



2.2. THEORY SETUP AND MODEL CATEGORIES 27

2.2 Theory Setup and Model Categories

In this section, we formulate the problem of the Standard Model coupled to, for sim-
plicity, an abelian dark sector with arbitrary kinetic or mass mixing terms allowed
by Lorentz, gauge symmetries and renormalizability. Our formulae are then applied
in subsequent sections to make predictions for event rates in dark matter detection
experiments.

To read out the gauge boson propagators we write the general renormalizable form
of the Lagrangian :

L = −1

4
ΦT

µν KΦµν +
1

2
ΦT

µ M2 Φµ − 1

2
∂µΦT

µ Ξ ∂νΦν + Jµ
T Φµ , (2.2)

where Φµν = (∂µΦν − ∂νΦµ) is a N -column matrix field strength tensor corresponding
to an N -column Φµ vector field, “T” denotes the transpose of a matrix, K and M2

are real and symmetric N × N matrices with model dependent elements to be spec-
ified below, and Ξ is the gauge fixing N × N symmetric matrix necessary to remove
unphysical gauge degrees of freedom. Interaction terms are encoded in the last term
of eq. (2.2) where an external current Jµ, associated with symmetries, couples to the
gauge fields.

One has to notice that elements of the mass matrix M2 should be further restricted
by electromagnetic gauge invariance. Phenomenologically speaking, there should al-
ways be a pole on the propagator 〈ΦµΦν〉 corresponding to the massless photon i.e., the
determinant of the inverse propagator at zero momentum must be exactly zero. Fur-
thermore, without loss of generality, we can always assume that the diagonal elements
of matrix K are normalized to unity.

In Appendix B we calculate the Feynman propagator, D̃µν(p) with momentum p,
for the gauge field Φµ which in momentum space reads,

i D̃µν(p) = (K p2 −M2)−1

(
gµν −

pµ pν
p2

)
+

(
Ξ p2 −M2

)−1 pµ pν
p2

. (2.3)

At lowest order in ~, interactions among fields are stored in the action functional

S[J̃] =
1

2

∫
d4p

(2π)4
J̃T
µ (p) [iD̃µν(p)] J̃ν(−p) , (2.4)

where J̃µ(p) is the vector current in momentum space. Equations (2.3) and (2.4) are
what we actually need to describe observables that arise from mixing dark (or hidden)
and visible gauge bosons. As a simple example, we consider the electromagnetic and
the dark gauge boson current. Then in eq. (2.2), it is JT

µ = (eJe.m
µ , gXJ

dark
µ )T . It is

then clear from eq. (2.4) that interactions between the visible and the dark sector will
involve off diagonal elements of the propagator (2.3). Observables, like nucleon recoil
event rates can easily be described using the above propagator mixing formalism [59],
by simply finding the inverse matrices such in eq. (2.3) for a given model. We remark
here that the propagator mixing formalism works equally well in different current basis
such as Q − T3 or Y − T3, where Q and Y are the charge and hypercharge of the
particles respectively.
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Figure 2.1: Diagramatic form of Feynman propagator appeared in eq. (2.3) between
gauge boson “flavours” i and j. For explicit expressions in model I see eqs.(2.6)-(2.11);
for model II see eq. (2.14).

2.2.1 Model I : Non-standard Kinetic Mixing K

Models in this category [42, 43] have been exploited in ref. [47] as candidates for ex-
plaining positron excess in cosmic ray data experiments. In its simplest form, the dark
matter particle, χ, is charged under a ‘dark’ U(1)X and the corresponding ‘dark’ gauge
boson Xµ mixes with the photon Aµ and Z-gauge boson, Zµ. Annihilations of dark
matter particles into only SM leptons (and not quarks) are kinematically allowed when
the intermediate gauge boson has a mass at the GeV scale.

In notation of ref. [60] and in basis (Aµ, Xµ, Zµ) (or else Q − T3) our matrices K
and M2 appeared in eq. (2.3), become:

K =




1 −ǫ cos θW 0
−ǫ cos θW 1 ǫ sin θW

0 ǫ sin θW 1


 , M2 =




0 0 0
0 m2

X 0
0 0 m2

Z


 , (2.5)

where mX is the mass of the exotic gauge boson, mZ is the mass of Z-boson, θW is
the weak mixing angle and ǫ is a small (≈ 10−3) mixing parameter between U(1)Y and
U(1)X field strength tensors. Working in Feynman gauge ( Ξ = 13×3 ) and keeping up

to ǫ2-terms it is easy to work out the mixed propagators D̃ij
µν(p), depicted in Fig.2.1,



2.2. THEORY SETUP AND MODEL CATEGORIES 29

between photon, X and Z-gauge bosons, labeled 1,2,3, respectively :

i D̃11
µν(p) =

gµν
p2

+
ǫ2 cos2 θW
p2 −m2

X

(
gµν −

pµpν
p2

)
+O(ǫ3) , (2.6)

i D̃12
µν(p) =

ǫ cos θW
p2 −m2

X

(
gµν −

pµpν
p2

)
+O(ǫ3) , (2.7)

i D̃13
µν(p) = − ǫ2 p2 cos θW sin θW

(p2 −m2
X)(p

2 −m2
Z)

(
gµν −

pµpν
p2

)
+O(ǫ3) , (2.8)

i D̃22
µν(p) =

gµν
p2 −m2

X

+
ǫ2 p2 (p2 − cos2 θWm

2
Z)

(p2 −m2
X)

2(p2 −m2
Z)

(
gµν −

pµpν
p2

)
+O(ǫ3), (2.9)

i D̃23
µν(p) = − ǫ p2 sin θW

(p2 −m2
X) (p

2 −m2
Z)

(
gµν −

pµpν
p2

)
+O(ǫ3) , (2.10)

i D̃33
µν(p) =

gµν
p2 −m2

Z

+
ǫ2 p4 sin2 θW

(p2 −m2
X)(p

2 −m2
Z)

2

(
gµν −

pµpν
p2

)
+O(ǫ3). (2.11)

Some remarks are in order : i) among the three physical masses only m2
X mass is

shifted by an amount of m2
Xǫ

2 that we ignore, ii) gauge invariance for the off diagonal
propagator terms is preserved as should be the case. As far as the effective action in
eq. (2.4) is concerned, additional statements are in order:

• The single pole [1/p2] appears only in Je.m · Je.m exchange as usual in the SM.

• A pole [1/(p2−m2
X)] for the exotic bosonXµ appears, apart from JX ·JX exchange,

also in Jem · JX exchange at O(ǫ).

• There is exchange of current JX · JZ i.e., neutrinos and dark matter particles,
through a double pole of X and Z at order ǫ.

• There is exchange of Jem · JZ at order ǫ2 via double pole of X and Z.

The ǫ ≈ 10−3-term in the kinetic mixing can naturally arise as a result of mixing two
U(1)’s at high energies - a mechanism first proposed in ref. [42]. Furthermore, X-boson
contributions to the muon anomalous magnetic moment relative to the SM expectation,
∆αµ = αexp

µ − αSM
µ = (290± 90)× 10−11 [61], are easily found using eq. (2.6) to be

∆αµ =
αem

3π
ǫ2 cos2 θW

(
mµ

mX

)2

, for
mµ

mX

≪ 1 . (2.12)

This requires ǫ . 3×10−2 for mX ≃ 1 GeV, where the equality accounts for the 2σ up-
per limit on ∆αµ. Of course there are many other constraints on the mixing parameter
ǫ from direct or indirect collider searches and we refer the reader to refs. [62–65]. For
example, as we see from eqs. (2.6), (2.9) and (2.11) corrections to oblique electroweak
observables arise at order ǫ2 similar to the case of muon anomalous magnetic moment.
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2.2.2 Model II : Non-standard Mass Mixing, M2

Models belonging to this category are usually referred to as Stueckelberg models [51].
An account on “Stueckelberg” extensions of the Standard Model can be found in [66].
Here, it is more convenient to work on Y −YX −T3 basis (Bµ, Xµ, A

3
µ). We now assume

that only the matrix M2 is nontrivial,

K =




1 0 0
0 1 0
0 0 1


 , M2 =




1
4
g2Y v

2 +m2
Y mY mX −1

4
gY g v

2

mY mX m2
X 0

−1
4
gY g v

2 0 1
4
g2v2


 , (2.13)

where gY , g are the U(1)Y , SU(2)L gauge couplings respectively, m2
Y is a mass term for

the hypercharge gauge field Bµ and v is the vacuum expectation value. The form of the
upper left 2× 2 M2 matrix guarantees electromagnetic gauge invariance i.e., massless
photon. Furthermore, the zero elements (23) and (32) guarantee that neutrinos are not
charged under electromagnetism. Demanding that the inverse propagator has poles at
the physical masses, det[p2 −M2]|p2=m2

i
= 0 where mi = 0,mX ,mZ , we find that the

photon mass is zero to all orders in mY , the dark gauge boson and the Z-boson masses
are not altered up to O(m2

Y ), and thus m2
Z = 1

4
(g2 + g2Y )v

2 +O(m2
Y ).

Following eq. (2.4), we obtain the following effective action (see Appendix C):

S[J ] =
1

2

∫
d4p

(2π)4

{[
e2 Je.m(p) · Je.m(−p)− 2 e2

gX
gY

mY

mX

Je.m(p) · JX(−p)
]

1

p2
+

+

[
g2X JX(p) · JX(−p)

(
1− m2

X

m2
Z

)
+ 2 e2

gX
gY

mY

mX

Je.m(p) · JX(−p) −

− 2 gY gX
mX mY

m2
Z

JX(p) · JY (−p)
]

1

p2 −m2
X

( m2
Z

m2
Z −m2

X

)
+

+

[
g2 JZ(p) · JZ(−p)

(
1− m2

X

m2
Z

)
− 2 e2

gX
gY

mX mY

m2
Z

Je.m(p) · JX(−p) +

+ 2gY gX
mX mY

m2
Z

JX(p) · JY (−p)
]

1

p2 −m2
Z

( m2
Z

m2
Z −m2

X

)}
+O(m2

Y ), (2.14)

where e ≡ gY g/
√
g2Y + g2 is the electron charge.

Furthermore, Je.m(p) = JA3
(p) + JY (p) is the momentum space Fourier transform of

the electromagnetic current, i.e., Jµ
e.m =

∑
f Qffγ

µf with Qfe being the charge of a
generic fermion f . The dark current JX obtains an analogous formula with obvious
replacement of charge Qfe by another (hyper)charge, QX . Of course, if fermions under
consideration are Majorana particles then the corresponding current has only axial-
vector form. In addition, JZ denotes the Fourier transform of the Standard Model
neutral current Jµ

Z = 1
cos θw

(Jµ
A3

− sin2 θw J
µ
e.m), where the electromagnetic current is, as

usual in the SM, the sum of the third component of the isospin Jµ
A3

and hypercharge
currents Jµ

Y .
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The physics of eq. (2.14) is now transparent : to order O(mY ), there are interactions
between the electromagnetic Je.m and dark current JX mediated by the photon i.e.,
the dark matter particle is charged, and interactions between the hypercharge JY and
dark current JX mediated by (X or Z) gauge bosons, respectively. An estimate of the
dominant contribution to ∆αµ results in an upper bound mY

mX
. 9× 10−4, where a 2σ

bound on ∆αµ is taken from ref. [61]. As normal in the SM, when the limit of gY → 0
is taken, weak currents in eq. (2.14) exhibit a global SU(2) “custodial” symmetry. In
present, this symmetry is further enhanced to a global SO(4) ∼ SU(2)⊗ SU(2) if, in
addition to gY → 0, we take the limits gX → g and mX → mZ or mX → 0. In the
former case the “hypercharge-dark” current mixing cancels out in the effective action,
eq. (2.14). However, there is still Je.m ·JX current mixing. In the latter case (mX → 0)
the off-diagonal, “e.m - dark” currents cancel out to all orders in mY , even for general
values of gauge couplings since the remaining gauge symmetry is now U(1)e.m⊗U(1)X .
In this limit, eq. (2.13) tells us there is no connection between the SM and the Dark
sector.

2.2.3 Model III : Direct coupling, no mixing

In this model, some of the SM leptons (but not quarks) ℓL, eR and the WIMP particle χ
are coupled directly to the dark gauge boson Xµ, in principle with different couplings2:

Jµ
X = g′ Y ′(eL) ℓLγ

µℓL + g′ Y ′(eR) eRγ
µeR + gX Y ′(χ)χγµχ , (2.15)

where Y ′(eL, eR) = (1,−1) denotes the particle hypercharge under the new gauge
symmetry. As it has been suggested in Refs. [37,53,54,56,57], this could be an anomaly
free gauged U(1)Le−Lτ

. Of course, a new Dirac fermion χ would be playing the role
of dark matter particle is also gauged under this symmetry with Y ′(χ) = 1. Because
we have already discussed the effects of the kinetic and mass mixing in the previous
models, without loss of generality, we assume that these mixing matrices are trivial in
this model at tree level3. If Xµ does not couple to the muon, then the most important
constraint on α′ = g′2/4π will arise from the ν − e scattering at low q2 (ref. [67]):

α′

m2
X

. 7× 10−7 . (2.16)

We shall use this bound when discussing electron recoil detection rates in section 2.4
as is typically comparable with other direct experimental bounds arising from LEP
or meson factories. If the Xµ vector boson couples to electrons and muons instead,
there is a comparable bound to eq. (2.16) from the muon anomalous magnetic moment.

Following ∆αµ = α′

3π

m2
µ

m2
X

for mµ ≪ mX , there is a bound

α′

m2
X

. 4.4× 10−6 . (2.17)

2Various possibilities on how this is realized can be found in ref. [53].
3Of course mixing of the Xµ gauge boson with the U(1)Y is inevitable at one loop. Its magnitude

is calculable : ǫ ≃ α
′
2 log mτ

mµ
= 2× 10−4 for α′ = αem. The rest will proceed following eqs.(2.6 - 2.11)

of model I.
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Figure 2.2: A Feynman diagram leading to the direct interaction of the WIMP χ to
the quarks relevant for direct detection of dark matter. The process is mediated by the
physical photon. The cross indicates merely that the exotic gauge boson has a small
admixture of the photon. Similarly the WIMP can also couple to electrons.

2.3 Conventional WIMP searches

Conventional DM searches deal with phenomena of WIMPs scattered of a nucleus.
The study of the recoil energy spectrum is the primary goal of experiments such as
CDMS [23], XENON [24] and DAMA [25]. For models we described in the previous
section there are two cases which have been discussed in the literature that could
explain the anomalous cosmic ray events:

a) The lightest mediator is massless and

b) the lightest mediator is massive with mass around the proton mass (mp),

in addition to the assumption that

mp ≪ mχ , (2.18)

where mχ is the WIMP mass. Only model II belongs to the first category and models
I, II belong to the second since by definition, there is no direct coupling of X-boson to
quarks in model III. In the following subsections we present the WIMP-nucleon cross
section for both cases (a) and (b).

2.3.1 Massless Mediator

The differential WIMP-proton cross section in the rest frame of the initial proton is
given by:

dσ =
s(β)

β

e2 (gXκ)
2

q4
d3p′

(2π)3
d3q

(2π)3
(2π)3 δ(3) (p− p′ − q) (2π) δ(T − T ′ − Tq) . (2.19)
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In the equation above p′,p are the momenta of the incoming and outgoing WIMP re-
spectively, q the momentum transfer to the nucleon and T = p2/2mχ, T

′ = (p′)2/2mχ

and Tq = q2/2mp, are respectively the corresponding kinetic energies in the non rela-
tivistic limit. Furthermore, β is the WIMP velocity and s(β) = 1 for a WIMP which
is a Dirac fermion, while s(β) = β2 in case it is Majorana one [68] (For a detailed
derivation of this result see Appendix F) 4). One finds that the momentum transfer
and the final nucleon energy are given by:

q = 2µrυ ξ ≈ 2mpυ ξ , Tq ≈ 2mp υ
2ξ2 , (2.20)

where µr is the WIMP-nucleon reduced mass, mp is the proton mass and 0 ≤ ξ ≤ 1
is the cosine of the angle between the incoming WIMP and the outgoing nucleon.
Integrating over the momentum of the outgoing WIMP and the magnitude of the
momentum of the final hadron as well as the φ-angle one finds :

dσ =
s(β)

β

e2 (gXκ)
2

2π

1

(2mp)2
dξ

υ3ξ3
. (2.21)

The above expression exhibits, of course, the infrared divergence. We will impose a
low momentum cut off Eth/A provided by the energy threshold Eth, where A is the
mass number of the target, i.e.

ξmin =

√
Eth

(2Ampβ2)
. (2.22)

Thus the total cross-section for a Majorana WIMP is given by:

σ =
α

2
(gXκ)

2 1

(mp)2

(
Amp

Eth

− mp

Tmax

)
≈ α

2
(gXκ)

2 1

(mp)2
Amp

Eth

. (2.23)

Equation 2.23 shows a much stronger dependence of the event rate on the threshold
energy Eth due to the adopted cut-off Ecut−off = Eth/A. It is interesting to note that
this cross section is independent of the WIMP velocity (in the case of a Dirac WIMP
the extracted from the data cross section must be multiplied by β2). We distinguish
two cases :

1. The case of Majorana WIMP. We find:

σ ≈ 1.6× 10−30 cm2 (gXκ)
2 2Amp

Eth

. (2.24)

4The Majorana fermion does not possess electromagnetic properties. Hence only the γµγ5 of the
WIMP –X-boson interaction contributes.
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The direct dark matter experiments have set on the coherent nucleon cross section
the limits:

• The CDMSII experiment [23]:
The best limit is 6.6 × 10−44 cm2. The extracted value depends, however,
on the WIMP mass. It can vary between 6.6× 10−44 and 6.6× 10−42 cm2.

• The XENON10 collaboration [24]
They extract 8.8× 10−44 cm2 and 4.5× 10−44 cm2 for WIMP masses of 100
and 30 GeV respectively.5

For our purposes we will assume that the extracted from the data nucleon cross
section is 10−7pb = 10−43cm2. Furthermore, we will take as a reference a threshold
energy of 5.0 KeV and examine the sensitivity of our results to the experimental
threshold. Using the experimental limit, σp ≤ 1.0× 10−43 cm2, we can write:

Rate(new)

Rate(conventional)
= 1.6× 106

Z2

A2
(gXκ)

2 Amp

Eth

. (2.25)

Note that the coherence factor now is Z2, since in the case of the photon only
the protons of the target contribute. Adopting a threshold value of 5 KeV, we
get

Rate(new)

Rate(conventional)
= 3.0× 1018

Z2

A
(gXκ)

2 . (2.26)

For the Ge target (A = 73, Z = 32) we get

Rate(new)

Rate(conventional)
= 4.3× 1019 (gXκ)

2 , (2.27)

which leads to the limit:

|gXκ| ≤
√

1

0.43× 1019
= 1.6× 10−10 . (2.28)

From the second term in eq. (2.14) and assuming that αDM = g2X/4π = αem, one
can easily translate this into bounds on the model II parameters for Majorana
WIMP :

QX
mY

mX

. 0.54× 10−10 , (model II) . (2.29)

2. The case of a Dirac WIMP. We find:

σ ≈ 1

β2

α

2

1

(mp)2
(gXκ)

2 Amp

Eth

. (2.30)

5These limits however, have been improved for WIMP mass lower than 10 GeV. For the CDMSII
experiment the extracted value is 2.4×10−41 cm2 for WIMPmass∼ 10 GeV with 90% upper confidence
level. For XENON10 the spin independent dark matter-nucleon cross section is > 3.5× 10−42 cm2 for
a dark matter particle with mass 8 GeV.
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If we knew the coupling |gXκ| we could incorporate this into the evaluation of the
nuclear cross section, fold it with the velocity distribution and proceed with the
evaluation of the event rate. Since, however, we like to constrain the parameter
|gXκ| we will employ an average velocity:

σ →< σ > ≈ <
1

β2
>
α

2

1

(mp)2
(gXκ)

2 Amp

Eth

. (2.31)

But for a Maxwell - Boltzmann distribution i.e., < 1
β2 > → 3

<β2>
, we obtain

the constraint:

|gXκ| ≤ 1.6× 10−10

√
< β2 >√

3
≈ 0.8× 10−13 , (2.32)

from which the bound on model II for αDM = αem:

QX
mY

mX

. 0.27× 10−13 , (model II) , (2.33)

is found. As expected the limit is now more stringent than in eq. (2.29).

The results for the Xe target are similar. This bound is by many orders of magnitude
stronger than the one obtained from electroweak fits [66] or (g − 2)µ [see discussion
towards the end of section (2.2.2)]. The corresponding bound for Dirac WIMP is about
three orders of magnitude more stringent. This means that additional mechanisms
should be added in model II (Stückelberg type of ref. [66] for example) in order to
efficiently depleting the WIMP in the early universe.

Although eq. (2.29) [or eq. (2.33)] provides a very stringent limit, we should not
forget that in this case we have a much stronger dependence of the rates on the energy
threshold through the need for a low energy cut off on the elementary cross section.

Alternatively we may extract from the data for Xe (A = 131, Z = 54) an elementary
cross section assuming it to be of the form6 :

σS
N,χ0 (A,Eth) = σ0

A

131

5 keV

Eth

, (2.34)

where σ0 is the elementary cross section obtained in the particle model for a target with
nuclear mass number A and threshold energy Eth. Then by fitting to the experiment
we obtain:

(131/54)2σS
N,χ0 = 0.5× 10−7 ⇒ σ0 = 2.9× 10−7pb = 2.9× 10−43 cm2 . (2.35)

In spite of the (Z/A)2 factor we obtain a smaller value than in the standard experiment.
This is due to the small cut off energy Eth/A employed. With the above ingredients
the number of events in time T due to the coherent scattering [69], can be cast in the
form:

R ≃ 1.07 10−5 × T

1y

ρ(0)

0.2 GeVcm−3

100 GeV

mχ0

m

1 kg

√
〈v2〉

280 km s−1

σS
N,χ

10−43 cm2
fcoh(A, µr(A)), (2.36)

6This treatment does not distinguish between a Majorana and a Dirac WIMP.
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Figure 2.3: The total rates for traditional WIMP searches assuming a nucleon cross
section σN = 10−43 cm2 in (a). The case of the photon mediated process considered
in this work is exhibited in (b). Both refer to the case of a heavy target (A=131)
and were computed assuming an energy threshold of 5 KeV. The results for the Iodine
target used by the DAMA experiment are almost identical.

where the elementary cross section σS
N,χ can be treated as a phenomenological parame-

ter independent of the WIMP mass in units of 10−43 cm2. The quantity fcoh(A, µr(A))
can be obtained from the published in ref. [69] values of t for the standard MB velocity
distribution (n=1). For the photon mediated mechanism examined here, the above
equation must be modified by multiplying fcoh(A, µr(A)) with the factor Z2/A2 and
employing eq. (2.34) for the elementary cross section (in units of 10−43 cm2). The
event rate per kg of target per year for the traditional experiments for a heavy isotope
like Xe and a light isotope like 19F, as a function of the WIMP mass is exhibited in
Figs 2.3 and 2.4. On the same plots we show the event rate for the photon mediated
process examined in the present work. It is not surprising that the agreement is good
since the elementary cross section was fitted to the data. The small difference is un-
derstood, since in the extraction of the elementary cross section from the data, a zero
threshold value was used in the phase space integrals. The event rates are sensitive
functions of the threshold energy, R = R(Eth). In the case of the Xe isotope the ratio
R(Eth)/R((Eth)min is exhibited in Fig. 2.5. The threshold dependence is much more
profound in the case of the light WIMP, since, then, the average energy transfered
is small. As expected the threshold dependence is more dramatic in the case of the
present model (this is a bit obscured in the figure since in this case the graphs are nor-
malized at 5 keV). In the case of a Dirac fermion the extracted limit will be smaller,
but the traditional calculations are not adequate for the analysis, due to the different
velocity dependence of the elementary cross section.
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Figure 2.4: The same as in Fig. 2.3 in the case of the light target 19F .

2.3.2 Massive Mediator

In this case the WIMP - nucleon cross section reads :

σ = s(β)
16παem κ

2 αDM m2
p

m4
X

= 1.2× 10−30 cm 2 s(β)
α

137−1

αDM

137−1
κ2

(
mp

mX

)4

, (2.37)

where the cross section refers to Dirac (Majorana) WIMP and s(β) = 1(β2) respec-
tively. Taking β2 → < β2 > ≈ 10−3 we find:

κ . 3× 10−7 (3× 10−4) . (2.38)

From these we obtain bounds for parameters in models I, II [see eqs. (2.8) and (2.14)],

ǫ . 3.0× 10−7 (3.0× 10−3) , (model I) (2.39)

QX
mY

mX

. 1.6× 10−6 (1.6× 10−3) , (model II) , (2.40)

where the number in parenthesis corresponds to Majorana WIMP dark matter particle.
These limits are less stringent than those obtained in the case of the massless mediator.
In the case of the massive mediator, with the possible exception of the velocity depen-
dence in the case of Majorana WIMP, the cross section behaves as in the standard
CDM case, since in this case we do not encounter an energy cutoff. Since, however, we
do not know the values of the parameters ǫ and mY

mX
, we cannot make predictions about

the event rates. Instead we have used the present experimental limits to constrain
these parameters. Thus we saw that the current experimental limits impose the most
stringent limits on these parameters. If, on the other hand, we use the previous con-
strains we can conclude that WIMPs in models I, II scatter off nuclei too many times.



38 CHAPTER 2. DIRECT DETECTION OF DARK MATTER
R
(E

th
)/
R
((
E

th
) m

in
−→

5 10 15 20

0.2

0.4

0.6

0.8

1.0

R
(E

th
)/
R
((
E

th
) m

in
−→

8 10 12 14 16 18 20

0.4

0.6

0.8

1.0

Eth −→ keV
(a) (b)

Figure 2.5: The quantity R(Eth)/R((Eth)min, i.e. the ratio of the event rate at a
given threshold divided by that at the lowest threshold considered, as a function of
the threshold energy. In (a) as predicted by traditional mechanisms (lowest threshold
assumed zero). In (b) as predicted by the present model (now due to the need for a
cut off the lowest threshold energy employed was 5 keV). The thick line, short dash,
long dash, fine line and long short dash correspond to WIMP masses 10, 50, 100, 200
and 500 GeV respectively.

These effects should have been seen in experiments [23,24] (or may have already been
seen [25]). An exception is a Majorana WIMP candidate in model I which results in
current sensitivity event rates.

2.4 Unconventional WIMP searches

2.4.1 Cross Section

The other possibility is the direct scattering of WIMPs by electrons that are bounded
in atoms. The relevant Feynman diagram is obtained replacing the quarks by electrons.
In this case only the electron flavour can be detected since the other flavours are not
energetically allowed. Since the outgoing electrons are expected to have energies in
the eV region one cannot ignore atomic binding effects. The binding energy b is found
from the tables of ionization potential (energy) of an atom.7

The problem is to find the cross section for WIMP scattered off an electron bounded
in an atom. In order to proceed we shall make two simplifying assumptions :

1. As a working example, we shall assume that the target is a hydrogenic atom
denoted by H i.e., a nucleus with charge +Ze and a single bounded electron

7Tables are normally given in kJ/mol, but they can easily be translated in eV, since we can use
the fact that 96.485 kJ/mol = 1 eV. Thus for Cs we find b = 375.7/96.485 = 3.89 eV.
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with charge −e. We shall discuss deviations from this assumption throughout.

2. The gauge boson mediator X couples only to WIMP and leptons but not to
quarks. This is a necessary condition to explain PAMELA positron excess of
events. Therefore, this discussion refers strictly to model III in eq. (2.15)

There are four processes that could take place in WIMP + H-like atom collisions :

χ + H −→ χ + H (elastic) , (2.41)

χ + H −→ χ + H∗ (inelastic) , (2.42)

χ + H −→ χ + e− + H+ (production) (2.43)

χ + H −→ (χ + H) (bound state) . (2.44)

For the rest we shall consider only the situation (2.43). The elastic scattering (2.41)
cannot be detected, and although we cannot exclude the inelastic one (2.42) from being
experimentally probed through final state photons, we believe that it would be easier to
detect the electrons from (2.43). We shall assume that the electron emerges with high
momenta, p′

e, such that in the final state its interaction with the Coulomb potential in
H-like atom is negligible, i.e, we can use plane wave states for incoming and outgoing
particles. Using standard textbook [34] wavepacket analysis our starting point will be
the cross section formula in the lab frame:

dσ =
1

2Eχ 2Ee

1

|v|
d3p′

χ

(2π)32E ′
χ

d3p′
e

(2π)32E ′
e

|M|2 (2π) δ(Tχ − T ′
χ − T ′

e − b)×

× d3pe (2π)
3 δ(3)(pχ + pe − p′

χ − p′
e) |φ(Z,pe)|2, (2.45)

where pχ,pe (p
′
χ,p

′
e) are the incoming (outgoing) three vector momenta of the WIMP

and electron respectively, and M is the matrix element of the process χ + e → χ + e
averaged over the spins of the initial states calculated in Born approximation. We also
ignore local velocity effects from the bound electron in the (static in lab frame) atom
i.e., that is the relative velocity is v ≃ vχ. Ti = p2i /2mi, i = χ, e are the kinetic
energies and b is the binding energy of the electron in H-atom (b ≈ 13.6 eV). Moreover,
in the non-relativistic limit Eχ ≃ E ′

χ ≈ mχ and Ee ≃ E ′
e ≈ me with mχ ≫ me,

while φnℓmℓ
(p), normalized at

∫
V
d3p |φnℓmℓ

(p)|2 = 1, is the Fourier transform of the

coordinate wave function ψnℓmℓ
(r). Using the δ(3)-function to perform the integration

over pe, we obtain:

dσ =
|M|2

16m2
χm

2
eβ

d3p′
χ d

3p′
e

(2π)2
δ

( |pχ|2
2mχ

−
|p′

χ|2
2mχ

− |p′
e|2

2me

− b(Z)

)
×

× |φnℓmℓ
(Z,p′

χ + p′
e − pχ)|2, (2.46)

where the energy conservation delta-function has been written out explicitly. The
result of eq. (2.46) is a product of two parts : a part that contains the dynamics of the
WIMP-electron interaction through the matrix element |M| times the probability of
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finding the target electron with momentum pe = p′
χ + p′

e − pχ in H-atom. In addition
the matrix element of the process χ+ e→ χ+ e averaged over the spins of the initial
states in Born approximation reads :

|M|2 ≃
(16π)2αDMα

′m2
em

2
χ

(|pχ − p′
χ|2 −m2

X)
2
s(β) , (2.47)

where the factor s(β) ≡ 1 (β2) for Dirac WIMP (Majorana WIMP) particle. Note that
the cross section for Majorana WIMP is always smaller by a factor of β2 compared to
the one involving Dirac WIMP (details in Appendix F). We now use the kinetic energy
δ-function appearing in eq. (2.46) in order to perform the |p′

χ| integration and arrive
at:

dσ =
16π2αDMα

′m2
χ s(β)

(|pχ − p′
χ|2 −m2

X)
2

|p′
χ|

|pχ|
|p′

e|2d|p′
e| |φnℓmℓ

(Z,p′
χ + p′

e − pχ)|2 dξ dη, (2.48)

where the initial WIMP momentum is |pχ| = mχβ and the scattering angles are defined
as

ξ = p̂χ · p̂′χ , η = p̂χ · p̂′e , ξ, η ∈ [−1, 1] . (2.49)

The integration over the azimuthal angles has been carried out trivially in eq. (2.48)
and the momentum |p′

χ| of the scattered WIMP is found to be

|p′
χ| =

√
m2

χ β
2 − 2mχ b(Z) − mχ

me

p′2
e , with p′e =

√
2meE ′

e , (2.50)

where b(Z) is the ground state energy for hydrogenic atoms:

b(Z) =
Z2

2a

e2

4π
=

Z2

2
me α

2
em , a ≃ 1

me αem

, (2.51)

in the approximation µ ≃ me, where µ is the reduced mass, with αem = e2

4π
≈ 1/137,

me ≃ 0.5 MeV and a = a0 ≈ 0.5 Å being the Bohr radius for Z = 1. Throughout this
Chapter, we are going to use the ground state momentum distribution of hydrogenic
atoms which reads:

φ100(Z, p) =
23/2

πa

(Za)5/2

(Z2 + p2 a2)2
. (2.52)

Notice that φ100(p) depends on |p|2 and therefore on the scattering angles η and ξ and

electron energy E ′
e. A term in eq. (2.48),

|p′

χ|
|pχ| =

|v′

χ|
|vχ| , arises from the fact that we

treated the H-atom as a brick wall potential. Had we not done so, the influence of the
Coulomb potential on the emerging electron would not have been uniquely correlated
to p′

χ, pχ and the back reaction of the proton should have been taken into account.

Exactly the same result as in eq. (2.48) can be found by using simpler time-
dependent perturbation theory for transitions to continuum in non-relativistic quantum
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mechanics [70] (for more details see Appendix E). In a more refined analysis however,
when the recoiling energy is in the neighborhood of the binding energy of the atom, one
should take into account effects from the continuum hydrogenic wave functions instead
of treating the final electron as plane wave. This analysis, though more accurate, is
far more complicated and does not change the qualitative features of our results. We
analyze below the corresponding cross sections for a massless and a massive mediator
as we did in section 2.3 for the nucleons.

Event Detection Rates

In general for an atom, due to binding energy effects, only the loosely bound electrons
can contribute to the process (2.43). So, we will convolute the elementary cross section
with the WIMP velocity distribution, which, with respect to the galactic center, we
will take to be Maxwell-Boltzmann form:

f(β) =

(
3

2 < β2 >

)3/2
1

π3/2
e
− 3β2

2<β2> . (2.53)

Transforming this into the local coordinate system:

β → ββ̂ + β0ẑ = ββ̂ +

√
2 < β2 >

3
ẑ, β2 → β2 +

2

3
< β2 > +2β cos(θ)

√
2

3
< β2 > , (2.54)

where θ is the angle between β̂ and ẑ and β0 =
√

2<β2>
3

is the sun’s velocity with

respect to the center of the galaxy and < β2 >≈ 10−6. Then we obtain the local
distribution of speeds fℓ(β) relative to the detector to be:

fℓ(β) =

(
3

2 < β2 >

)3/2
1

π3/2
e
−
(

3β2

2<β2>
+ 2β cos(θ)

√

3

2<β2>
+ 1

)

. (2.55)

The integration over the angles of the distribution can be done analytically. In eval-
uating the rate one has to incorporate the incoming flux. So, adopting appropriate
normalization, in the convolution we introduce the factor 1/

√
< β2 >. This way, as

we find in Appendix D, the rate is proportional to :

β fℓ(β) d
3β√

< β2 >
=

(
3

2 < β2 >

)3/2
2√
π
e
−
(

3β2

2<β2>
+1

)

β3

√
< β2 >

sinh
(
2β

√
3/(2 < β2 >)

)

β
√

3/(2 < β2 >)
dβ .

(2.56)
Combining this with the cross section of eq. (2.48) obtained previously we arrive at:

〈
dσ

dE ′
e

β√
< β2 >

〉
=

∫ βesc

βmin

dβ
βfℓ(β)√
< β2 >

dσ

dE ′
e

, (2.57)

where the lower velocity in the integral can be read from the positivity of the square
root quantity in eq. (2.50):

βmin =

√
2E ′

e

mχ

+
2b(Z)

mχ

, (2.58)
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Figure 2.6: The kinematics relevant to time modulation effects.

and βesc = 2.84
√
(2/3) < β2 > is the escape velocity. It is now easy to calculate the

differential event rate per eV ejected electron energy per year and per kilogram of
target material, to be

dR

dE ′
e

=
ρ0
mχ

√
< β2 >Ne

〈
dσ

dE ′
e

β√
< β2 >

〉
, (2.59)

where ρ0 = 0.2 GeV/cm3 is the WIMP energy density and Ne is the number of tar-
get electrons. Integration of eq. (2.59) upon E ′

e over the region from E ′
emin

= 0 to
[mχβ

2
esc/2 − b(Z)] results in the total event number per unit time and mass of the

target which among other parameters depends on the mass and atomic numbers of the
target atom. Moreover, we shall display results on the total event rate R(Z) when
E ′

emin
= Eth with varying experimental threshold energy Eth.

Time Modulation Effects for Electrons

In the convolution of the elementary cross section we have so far considered only the
motion of the sun with respect to the center of galaxy. More realistically, one should
consider also the Earth’s velocity and then find the modulated event rate that might
be detected on Earth. In this case the WIMP velocity is read from

v′ = v + v0 ẑ + v1 (sinα x̂ + cosα cos γ ŷ + cosα sin γ ẑ) , (2.60)

where v0 is Sun’s velocity, v1 is Earth’s annual velocity, γ ≈ π
6
is the angle between

the projection of vector v1 on the plane yOz and the ŷ direction and α = α(t) is the
complementary angle of the angle between v1 and x̂ (see Fig. 2.6 above). Then the
WIMP cross section has to be convoluted with

(
β fℓ(β) dβ√
< β2 >

)
=

(
β fℓ(β) dβ√
< β2 >

)

0

(1 + k δ cosα) , (2.61)
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where the expression with the subscript “0” refers to eq. (2.56) with δ = v1
v0

≈ 0.135
and

k =


2β

√
3

2 < β2 >

cosh
(
2β

√
3

2<β2>

)

sinh
(
2β

√
3

2<β2>

) − 3


 sin γ . (2.62)

It is now trivial to extend the distribution with energies event rate of eq. (2.59) with

dR

dE ′
e

=

〈
dR

dE ′
e

〉

0

+

〈
dR

dE ′
e

〉

mod

× cosα, (2.63)

where
〈

dR
dE′

e

〉
0
is the unmodulated differential event rate, while

〈
dR
dE′

e

〉
mod

contains also

the factor k in eq. (2.62). A detailed derivation of these expressions, is presented in
Appendix D.

2.4.2 Massless Mediator

In this case dark matter scattering happens via the coupling of the exotic gauge boson
to the photon (model II). In the general case the WIMP-electron cross section is not
independent of the velocity. Thus, we will first estimate the cross section by using an
average velocity

√
< β2 > = 10−3. Following eq. (2.48) for a photonic mediator we

find the differential cross section:

dσ

dE′
e

= s(β)16π2α′αDM κ2 m2
χme

|p′
χ|

|pχ|
|p′

e|
∫ 1

−1
dξ

∫ 1

−1
dη

|φnℓmℓ
(Z,p′

χ + p′
e − pχ)|2

(p′
χ − pχ)4

, (2.64)

where q = p′
χ − pχ is the WIMP momentum transfer which is ξ dependent. The cross

section peaks up the most from the forward direction ξ ≈ 1. It should be mentioned
that since the initial electron is bound, there is no infrared divergence in this case.
Moreover, the momentum transfer can be as low as :

|q| ≃ 2
b(Z) + E ′

e

β
. (2.65)

This relation is important for explaining our numerical results below. Furthermore, in
presenting the results we assume a Dirac WIMP fermion i.e. s(β) = 1. We choose a
benchmark scenario inspired by our findings in nucleon decay :

β =
√
< β2 > = 10−3 , Z = 1 , αDM = α′ = αem , mχ = 100 GeV , κ = 10−10 . (2.66)

As it is obvious from eq. (2.64) it is very easy to apply our numerical results to any
other parameters, β, αDM, α

′, κ than those shown in eq. (2.66). We must note here
that there is no parameter analogous to κ in model III. This parameter is used here
as a rescale factor and its very small value is adjusted so that we obtain rates of few
events.

In Fig. 2.7a are shown the results for the dσ/dE ′
e as a function of final electron’s

energy E ′
e for three different cases of hydrogenic atoms with Z = 1, Z = 3 and
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Figure 2.7: a) Predictions for dσ/dE ′
e as a function of the ejected electron energy E ′

e.
The target is assumed to be a hydrogenic atom in the ground state with Z = 1, 3, 6
(from top to bottom). b) The total cross section for process (2.43) as a function of the
experimental threshold energy for two binding energies. c) The differential event rate
as a function of the electron energy and various WIMP masses (10, 100, 1000) GeV
from (top to bottom). Other parameters not shown, are taken from eq. (2.66).

Z = 6 respectively. The differential cross section takes on its maximum values for final
electron energy of around few eV for Z = 1, around few tens of eV for Z = 3 and
around a hundred eV for Z = 6. For the case Z = 1, the extremum happens because

of a fast increase of the term
|p′

χ|
|pχ| |p

′
e| ∼

√
E ′

e and the almost constant value of |φ100|2
until 5 eV. For higher electron energies, e.g., E ′

e & 10 eV, the probability density factor
|φ100|2 drops fast as 1/E ′8

e and the term in the denominator of the integral increases as

E
′2
e , resulting in overall decreasing of the cross section as E

′−19/2
e . The same analysis

can be used to describe the behaviour of dσ/dE ′
e in the other cases (Z = 3, Z = 6).

We must note here that in the limit E ′
e → 0 we obtain dσ/dE ′

e → 0 as the case should
be. This is obscured in Fig. 2.7 due to the range choice of E ′

e.

Corresponding to the input parameters noted in (2.66) we calculate the total cross
section from eq. (2.64) after integrating over E ′

e in the region [Eth,mχ β
2/2 − b(Z)].

Our results for σ vs. the threshold energy Eth are depicted in Fig. 2.7b. We have
chosen two extreme cases of binding energies : b = 0.74 eV that is the binding energy
of the electron bounded in the two electron atom H−, and b = 13.6 eV that is the
one corresponding to the H-atom we have been dealing so far. For Eth . 10 eV the
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E ′
e [eV]

〈
dR
dE′

e

〉
[events/kgr target/year/eV]

unmod. mod. H
0.1 0.11 0.01 0.09
1 0.24 0.03 0.13
10 0.02 0.002 0.10
100 8.21× 10−9 1.04× 10−9 0.13

Table 2.1: Time modulation effects in case of a photonic mediator following eq. (2.63)
in the text. Various input parameters are given in eq. (2.66). H is the ratio of the
modulated divided by the unmodulated differential rate.

difference in cross section is about three to six orders of magnitude, while for higher
threshold energies becomes unimportant.

Following eq. (2.64) it turns out that the total cross section for process (2.43) is
WIMP mass independent. It is experimentally useful to know how the cross section
depends on the threshold energy Eth that a given experiment can accomplish. This
is plotted in Fig. 2.7b. For Eth . 1 eV, the cross section is essentially independent
of Eth. When the threshold becomes 5 eV, in the case of b(Z) = 13.6 eV, the cross
section drops by a factor of 5 while up to 10 eV by a factor of 50. For smaller binding
energy though, i.e., b(Z) = 0.74 eV, and up to 10 eV the cross section decreases by
three orders of magnitude.

Furthermore, the dependence of differential event rate dR/dE ′
e on the ejected elec-

tron energy E ′
e for three different WIMP masses, mχ = 10, 100, 1000 GeV, is shown

in Fig. 2.7c. There is a maximum which follows the behaviour of differential cross
section. The event rate falls as 1/mχ as the WIMP mass increases in accordance with
eq. (2.59). For energy of few eV’s and mχ = 10 GeV we obtain a handful of events for
κ = 10−10. A total event rate is obtained after integrating over the differential rate in
Fig. 2.7c. As a typical value, for mχ = 100 GeV and the parameters in (2.66) we find
R(Z = 1, κ = 10−10) ≈ 1 event/yr/target kgr. We must recall here that this assumes
a mixing parameter as small as κ = 10−10 !!

Finally, following the theoretical discussion of the previous subsection we examine
effects of the WIMP time modulation. In Table 2.1 we display both the unmodulated
and modulated differential event rate for four representative values of E ′

e in the case
of a massless mediator and parameters of eq. (2.66). The dimensionless parameter
H, which is the ratio of the modulated by the unmodulated differential amplitude,
is constant around 9 − 13% independent of the energy and the WIMP mass. The
modulation h = δ · k of the total rate is also going to be around 10%, which means
that the difference between the maximum (here always in June 3-rd) and the minimum
(here always in December) is 18− 26%, a result should not to be overlooked.
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2.4.3 Massive mediator

By taking the non-relativistic limit of eq. (2.48) and the assumption that the momen-
tum transfer in eq. (2.65) is much less than the mediator’s mass, q2 ≪ m2

X , we arrive
at:

dσ

dE′
e

=
16π2α′αDMκ2 s(β)

m4
X

m2
χme

|p′
χ|

|pχ|
|p′

e|
∫ 1

−1
dξ

∫ 1

−1
dη |φnℓmℓ

(Z,p′
χ + p′

e − pχ)|2. (2.67)

In what follows we assume a Dirac WIMP fermion, i.e., s(β) = 1. We assume the
following input parameters :

β =
√
< β2 > = 10−3 , Z = 1 , αDM = α′ = αem ,

mX = 1 GeV , mχ = 100 GeV , κ = 1 . (2.68)

Although this parameter space violates the bounds in eqs. (2.16) and (2.17), it serves
as a benchmark in comparing results with those of section 2.3 if possible. The value
of κ is chosen such that the resulting rate presented in the figures assumes no mixing
of the X-boson mediator which is formally the case of model III.

Results for the differential cross section dσ/dE ′
e for the electron in the ground state

of three hydrogenic atoms are shown in Fig. 2.8a. The differential cross section takes on
its maximum values for final electron energy of around few eV for Z = 1, ten of eV for
Z = 3 and around hundred eV for Z = 6. For the case Z = 1, the extremum happens

because of a fast increase of the term
|p′

χ|
|pχ| |p

′
e| ∼

√
E ′

e and the almost constant value

of |φ100|2 until 5 eV [see eq. (2.67)]. For higher electron energies, e.g., E ′
e & 10 eV, the

probability density factor |φ100|2 drops fast as 1/E
′8
e resulting in overall decreasing of

the cross section as E
′−15/2
e . In physical terms, the outgoing electrons of high energy

demand high momenta in the initial electron wavefunction, which leads to suppression.
The dependence on the Z is easily explained if we recall that for hydrogenic atoms,
〈p2〉n=1 = Z2p20 where p0 is the Bohr momentum for Hydrogen. Furthermore, despite
appearances in eq. (2.67), the differential cross section depends only very mildly on
the WIMP mass. One can show analytically that the double integral over the wave
function squared, is approximately proportional to 1/m2

χ which cancels the m2
χ in the

numerator.

Corresponding to the input parameters noted in (2.68) we calculate the total cross
section from eq. (2.67) after integration over E ′

e in the region [Eth,mχβ
2/2−b(Z)]. For

fixed velocity, β = 0.001, and Eth = 0 eV we find the following representative values :

Z σ[cm2]
1 3× 10−40

10 2× 10−44

50 3× 10−48

The total cross section increases by a factor of about 32 when β = βesc is taken. The
cross section decreases with Z [see also Fig.2.8a], the reason being the fact that the
binding energy increases with Z2 [see eq. (2.51)] and therefore we need to go to larger
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Figure 2.8: a) Predictions for dσ/dE ′
e as a function of the ejected electron energy E ′

e.
The target is assumed hydrogenic atom with Z = 1, 3, 6 (from top to bottom) in the
ground state. b) The total cross section as a function of threshold energy. c) The total
cross section as a function of mX for two different binding energies. We assume a Dirac
WIMP, Eth = 0 eV and input parameters from eq. (2.68) if not stated otherwise.

- compared to ground state - momenta where the wavefunction is small despite their
maximum value displacement towards larger momenta.

Assuming that the sensitivity of detecting low energy electrons will be analogous
to the ongoing experiments (≈ 10−43 cm2), we could even extract bounds on various
parameters in models I, II or III. From all running experiments, DAMA [25,58] is the
one that triggers on final state electrons with energy around 5 KeV. From Fig. 2.8a one
obtains that, around that energy, the cross section is too small for mX = 1 GeV and
all other inputs in eq. (2.68). However, dσ/dE ′

e ∝ m−4
X and therefore for mX ≈ 1 MeV

i.e., model types proposed in ref. [50], DAMA is a relevant experiment. Additionally,
this is demonstrated in Fig. 2.8c where the total cross section as a function of mX

is plotted for two reference values of binding energy. In Fig. 2.8b we examine the
total cross section as a function of the experimental energy threshold for low energies,
relevant to our proposal. As we can see, the total cross section reduces by a factor of
six in the region 0 . Eth . 10 eV. Above 10 eV the cross section drops drastically [see
total rate in Fig. 2.9b].

Although not shown, we have also examined departures of the wavefunction from
the ground state. The maximum value dσ/dE ′

e|max approximately appears at the
same region in E ′

e ≈ 1 − 10 eV. As an example, the difference in dσ/dE ′
e|max is an
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Figure 2.9: a) Differential event rate of Dirac WIMP, scattered by electrons in a hydro-
genic (Z = 1, A = 1) target, per year per Kgr as a function of ejected electron energy
E ′

e in eV. We assume three different WIMP masses : mχ = 10, 100, 1000 GeV, from
top to bottom, respectively. b) The total event rate as a function of the experimental
threshold energy for mχ = 100 GeV for two different binding energies. Other input
parameters are taken from eq. (2.68) for the massive mediator.

enhancement by a factor 20 when going from 1s → 2s. Furthermore, the size of
the momentum transfer in conjunction with the non-zero binding energy are such that
never let the wavefunctions to reach their zero nodes. Assuming one electron per target
atom, and the average cross section of Fig. 2.8a for Z = 1, the differential event rate
per eV of electrons energy per year per Kgr of hydrogen material as a functions of E ′

e

for various WIMP masses is depicted in Fig. 2.9a. The differential event rate again
exhibits a maximum which follows that of the differential cross section calculated in
Fig. 2.8a. The event rate is of course higher for smaller WIMP mass [recall eq. (2.59)]
and for electron energy of few eV’s it varies from 0.01 up to 2 events/yr/kgr/eV for
mχ = 1000, 10 GeV respectively. For electron energy of around 100 eV the role of
the wave function is to reduce the differential rate by an order of magnitude i.e., from
10−4 ÷ 10−3 events/yr/kgr/eV. The total event rate for mχ = 100 GeV and the other
parameters in eq. (2.68) is predicted to be:

R(Z = 1, κ = 1) ≃ 2 [events/yr/target kgr] . (2.69)

It is useful to know how the total rate (2.69) varies with the experimental threshold en-
ergy. This information can be extracted from Fig. 2.9b for two different but judiciously
chosen, values of binding energy. As in the case of the total cross section in Fig. 2.8b,
the total rate drops by only a factor of five until Eth ≈ 10 eV while it drops very
rapidly after about this scale. For example, it drops by a factor of 104 for Eth = 100
eV. Smaller binding energies [upper line in Fig. 2.9b] result in up to two orders of mag-
nitude bigger rates but for threshold energies as low as Eth . 5 eV. Finally, in Table
2.2 we calculate the effects of time modulation and present the differential event rate
for four different values of E ′

e in the case of massive mediator with mX = 1 GeV. We
assume also a WIMP mass mχ = 100 GeV and Z = 1. The H ratio is constant around
10% independent of the energy and the WIMP mass. The modulation h of the total
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E ′
e [eV]

〈
dR
dE′

e

〉
[events/kgr target/year/eV]

unmod. mod. H
0.1 0.06 0.01 0.17
1 0.19 0.02 0.11
10 0.079 0.008 0.10
100 1.84× 10−5 1.78× 10−6 0.097

Table 2.2: Time modulation effects in case of a massive mediator following eq. (2.63)
and various input parameters in eq. (2.68). H is the ratio of the modulated by the
unmodulated differential amplitude.

rate is also going to be around 10− 17%, which means that the difference between the
maximum (here always in June 3rd) and the minimum (here always in December) is
20− 34%.

2.4.4 Experiment : The prospects of detecting single ultra
low energy electrons

As discussed in a previous section observation of light X-boson would require detectors
with sub-keV sensitivities. The development of such detectors, having a low energy
threshold and low noise, remains generally a daunting challenge for present-day and
future low background experiments. As shown in Fig. 2.9 the signal of low energy elec-
trons produced by an elastic collision process exhibits a maximum at energies around
or even lower than 10 eV. At such energies a detector with single electron sensitivity
will be required to reach a reasonable efficiency. A notable effort to develop ultra low
threshold detectors in order to address low energy neutrino physics [71–74] is going on.
This has been achieved for low mass detectors. We are, however, seeking an even lower
energy threshold.

Usual solid state detectors employed for dark matter projects have typical thresh-
olds of a few keV. It is very difficult to combine sub-keV and big mass at the same
time. For instance Ultra-Low-Energy Germanium detectors [23] are able to reach a
threshold of a few hundred eV’s, but they are limited to a modular mass of a few
grams. Anyway, the achieved energy threshold is still below our requirements.

Single electron efficiency is achieved using detectors reaching very-high gains in
order to cope with electronic noise. Gaseous detectors are good candidates. In such
detectors high gains may easily be achieved. Having been conceived as a TPC Mi-
cromegas detector (•MS) [75], it is compatible with large drift volumes and operation
at high pressure, an example of which are the HELLAZ [76] prototypes. A great ad-
vantage of this detector is the versatility of target material: various gases from the
lightest (H2) to heaviest (Xe) could be used offering a large choice.

One idea to increase the mass of the target material is to use the recently developed
Spherical Proportional Counter (SPC) [79]. This detector consists of a large spherical
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gas volume with a central electrode and radial electric field. Charges deposited in the
drift volume are drifting to the central sensor where are amplified and collected. A
novel concept of a proportional sensor, a metallic ball having a radius of about 15 mm,
located at the center of curvature, acting as a proportional amplification structure
is used. It allows to reach high gas gains (≥ 104) and operates from low to high
gas pressure. At such gains, provided the low electronic noise of this detector, single
electron efficiency is easily achieved. The main advantages of the new structure relevant
to our project are:

• Simplicity of the design.

• A single channel is used to read-out a large volume.

• Robustness

• The depth of the interaction, related to the rise time of the signal, is measured.
This is important to apply fiducial cuts for background rejection purpose.

• Low detector capacity ≤ 0.1 pF, independent of the vessel size, allows very-low
electronic noise, which is a key point toward achieving low energy threshold.

• Versatility of the target material and density; the detector is compatible with a
large variety of gases and could operate from low pressure to high pressure. This
could be a precious tool to identify a possible signal out of background.

A main concern of the proposed detection scheme is the minimal background level
that will be reached by our system. By this, one means that the detector body and
appropriate shield will be built with materials which are screened for low levels of
natural and man-made radioactive impurities. Ordinary construction and shielding
materials, however, do contain trace amounts of naturally occurring and man-made
radionuclides which result in elevated background level; we need to design and fabricate
the detector by careful material selection made out of low level activity.

Unfortunately, however, there exists very little experience at the very low energy
(sub keV) region where our detector will be operating. An example is a low background
gaseous detector with sub KeV energy threshold developed for solar axion search [78].
The reached background level is quite low and is flat in the sub KeV energy range
down to 250 eV. Our purpose is to further decrease the energy threshold down to the
region of 10 eV. This region has never been explored and therefore reaching the desired
low level activity becomes a new experimental challenge. Single electron backgrounds
could be emitted by materials pulled by the electric field through thermionic emission.
The advantage of the spherical detector is that at the external vessel the electric field
is extremely low and therefore highly reduced thermionic emission is expected.

The present prototype having a volume of 1m3, filled with a gas at high pressure
with a target mass of the order of 10 kg could fulfill sensitivity requirements for our
project. We will search appropriate molecular gases having low binding energy and
compatible with operation in the Spherical Proportional Counter detector [79].
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At present it looks realistic to soon have a sphere of radius of 5 meters, which can
be under a pressure of 5 bars. Thus, if one fills it with 80% Ar and 20% Isobutane
(C4H10), one can have 212 Kg of Hydrogen. With this much Hydrogen using eq. (2.69)
and a threshold of ≈10 eV, we expect around 200 events per year for the parameters
in (2.68). In models [50] where the mediator mass is very low, e.g. mX ≈ 1 MeV, we
expect an increase of the event rate by almost six orders of magnitude. Therefore, if a
low energy experiment will be built it would possibly set the best limits on these kind
of models.

2.5 Conclusions

Cosmic ray results from PAMELA, HESS and FERMI collaborations show an unex-
pected rising of positron events with energy that may be due to Dark Matter particle
(χ) annihilations in the halo of our Galaxy. This Dark Matter particle “sees” the
SM ones only through its interactions with an X-boson that couples to the SM gauge
sector. Depending on the model, the mediator can be massless or massive with differ-
ent couplings. We have studied direct detection of this secluded type of dark matter
employing nucleons or electrons with main emphasis in the latter case.

Due to the small momentum transfer8 the massless case results in a large number
of events that should have been seen by current nucleon recoiling direct detection
experiments and therefore strong bounds on mixing parameters and couplings exist.
Our work emphasizes the role of the low energy electron recoil in direct detection
experiments and proposes a novel experimental avenue on how to proceed in searching
for such low energy electrons. For simple hydrogenic atoms, at low energy, E ′

e ≈ 10 eV,
the cross section is enhanced by orders of magnitude compared to KeV recoil energies.
In the neighborhood of low energies, the results depend highly on the binding energy of
the ejected electron: the more loose the electron is, the bigger the event rate becomes
as expected. In this regard we considered two possibilities:

1. The process is mediated by the massive mediator X (our model III). In this case
we do not have scattering off hadrons at tree level. Therefore, we do not have
dominant constraints on the parameters of the model coming from the ongoing
WIMP searches. Using the parameters of eq. (2.68) we have obtained fairly
large cross sections for a Dirac WIMP. Employing the spherical TPC detector
described above with a radius of 5 m under a pressure of 5 Atm we have found
that we could have about 200 counts in a year, assuming a threshold of 10 eV.
It is possible, however, that our choice of parameters is a bit optimistic and we
may have not considered all available constraints. Our results are also applicable
to model-I. In this case however, due to the fact that couplings of the X-boson
to hadrons appear at tree level, there exist strong constraints on the mixing
parameter already from the nucleon direct searches [see eq. (2.38)].

8For nucleons, the momentum transfer is ≈ 2 MeV and the energy transfer is ≈ 2 KeV, while for
low energy electron recoils they are ≈ 50 KeV and ≈ 10 eV, respectively.
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2. The process is accommodated by the massless mediator (leptophylic version of
model II). This mechanism is similar to that involving hadrons in section 2.3, one
simply replaces the quarks by leptons. In this case we have found that the most
stringent constraints on the parameters come from the standard WIMP searches.
Thus, using the parameters of eq. (2.66) we have obtained with the above detector
hundreds of events per year even with a (reduction) mixing coupling constant as
low as κ = 10−10 for a Dirac WIMP. Such a huge signal cannot be seen by current
experiments either due to lack of low energy threshold or because, experiments, like
CDMS and XENON, are keeping only nuclear recoil events. We were surprised
to find so large cross section. We now understand it, however, to be due to
the photon propagator (1/q2)2, which is favored by the fact that the momentum
transfer is very low in the case of electrons. We should mention that, since the
initial electron is bound, there is no infrared divergence and no need for a low
energy cut off. It should be also noted that quark couplings to X-boson will
come back through loop corrections even if they are forbidden at tree level by a
symmetry which is eventually broken. Then current nucleon recoil experiments
will be as important [see eq. (2.32)] and complementary to the electron ones.

In conclusions above the assumption that the WIMP is a Dirac particle has been made.
If the WIMP is Majorana particle, as we have shown (see Appendix F) the rates are
suppressed by approximately a factor β2 ≈ 10−6. For both the above cases, annual
time modulation effects are of the order of 20-30%, important enough to be noticed.

We have limited the discussion of the rates in the case of hydrogen, since our
cross section was evaluated using hydrogenic wave functions. Certainly the obtained
rates will increase, if one can exploit the other atomic electrons with smaller binding
energy. This situation was made manifest in our work with a judicious change of the
binding energy [see Figs. 2.7 b, 2.8 c, 2.9 b]. But then one should employ realistic wave
functions.

In a similar fashion one can treat other dark matter candidates like right handed
neutrinos, which arise in models in which the ordinary Dirac type mass is forbidden
due to a discreet symmetry, but communication with leptons is allowed via exotic
scalars [80–82] with masses in the 50 GeV region. It may also apply to other models
involving exotic fermions and scalars proposed and reviewed in ref. [83].



Chapter 3

Heavy Fermion Non-Decoupling
Effects

In the previous Chapter we analyzed different varieties of a scenario where a dark mat-
ter particle could annihilate in other particles, especially into Standard Model fermions.
In this Chapter, within a spontaneously broken gauge group, we carefully analyze and
calculate triple gauge boson vertices dominated by triangle one-loop Feynman diagrams
involving heavy fermions compared to external momenta and gauge boson masses.
Since a complete one particle irreducible vertex for three off-shell gauge bosons is a
useful tool in analyzing low energy inelastic scattering processes, we can use it to study
scattering processes with a photon in the final state, as an example. This can be use-
ful in dark matter scattering off atomic electrons and nuclei, mediated by light gauge
boson particles, as one application among many (see refs. [35,85,86]). This is an other
possible scenario that constitutes an alternative to the effects that we studied in the
previous Chapter. We perform our calculation strictly in four dimensions and derive
a general formula for the off-shell, one-particle irreducible (1PI) effective vertex which
satisfies the relevant Ward Identities and the Goldstone Boson Equivalence Theorem
(GBET). In the technical level we introduce arbitrary four-vectors in our calculation.
These vectors are associated with different types of divergences that appear during the
calculation and help in the reduction of these divergencies as much as possible. Our
goal is to search for non-decoupling heavy fermion effects highlighting their synergy
with gauge chiral anomalies. Particularly in the Standard Model, we find that when
the arbitrary anomaly parameters are fixed by gauge invariance and/or Bose symme-
try, the heavy fermion contribution cancels its anomaly contribution leaving behind
anomaly and mass independent contributions from the light fermions. We apply these
results in calculating the corresponding CP-invariant one-loop induced corrections to
triple gauge boson vertices in the SM, minimal Z ′-models as well as their extensions
with a fourth fermion generation, and compare with experimental data. This Chapter
is based on the published work [87].

53
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3.1 Introduction

In general, the Appelquist-Carazzone [88] theorem states that the effect from a heavy
fermion mass m at low energy observables is suppressed by powers of m. However, this
theorem does not hold for theories with chiral gauge couplings or large mass splitting
within gauge multiplets, a situation known to take place in the minimal Standard
Model (SM) of particle physics [1–3]. Failure of the decoupling of heavy fermion from
radiative corrections requires breaking of a local gauge symmetry and, in addition,
breaking of a global symmetry by these corrections [89, 90].

Another aspect of theories with chiral gauge couplings is the Adler-Bell-Jackiw or
chiral anomaly [30, 31, 91,92]. This is the situation where certain classical Ward Iden-
tities (WIs) are violated by quantum corrections (for reviews see [93–95]). For a model
that is non-anomaly free, anomalous Ward Identities render it non-renormalizable and
non-unitary. This problem shows up in every symmetry breaking stage of the model.
In order to cancel chiral anomalies associated with axial (AAA) or vector-axial (VVA)
currents in gauge theories, we either need to stick to only by-construction anomaly-free
gauge groups, or, to introduce additional chiral femionic fields [96, 97].

An energy region of experimental interest corresponds to the case where a fermion
mass m is very heavy, m2

Z < s≪ m2, so that it cannot be pair-produced at Tevatron,
LHC or a future lepton-collider. If this fermion is chiral i.e., it receives its mass
from the Higgs mechanism which is also responsible for the gauge boson mass, then
the question of the decoupling of this particle would cause a problem in anomaly
cancellation and therefore to gauge invariance. This question has been tackled in
many papers in the literature most notably by D’Hoker and Farhi in ref. [98, 99]:
decoupling of a fermion whose mass is generated by a Yukawa coupling induces an
action functional of the Higgs field and gauge boson fields term, analogous to Wess-
Zumino-Witten (WZW) term [100,101] in chiral Lagrangian. Then D’Hoker and Farhi
showed that the theory without the decoupled fermion but with the WZW term is
gauge invariant. Applications of this non-decoupling effect have been utilised in many
physics projects from hadronic up to electroweak physics of the SM and beyond, see
for example refs. [102–108]. However, to our knowledge, the above conclusion has not
been drawn in the broken phase of theories with spontaneous gauge symmetry breaking
like the SM. It is after all meaningful to discuss non-decoupling effects only in theories
where the physical masses appear explicitly.

The problem when discussing decoupling effects or in general physics associated
with the fermionic triangle graph is related to the question : what is the correct result
for such a graph? The answer depends on the physical set-up in which it arises [109].
For example, as we shall show below in the case of SM, gauge invariance and Bose
symmetry are enough to set the triple neutral gauge boson vertices finite and well
defined. Only then can we reach the conclusions for the theory at the heavy fermion
mass limit.

If the SM gauge group is extended by extra U(1)’s then anomaly cancellation con-
ditions become more involved. Recently, the authors of refs. [110,111] noted that such
cancellations may occur inside a “cluster” of anomaly-free heavy fermion sector which
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is not accessible by the current colliders, leaving behind non-decoupling effects in tri-
linear gauge boson vertices of the extra massive gauge boson Z ′ and those of the SM
Z ′ZZ, Z ′WW, Z ′Zγ that may be observable at low energies. These effects are visible
in the energy region where MZ′ ∼ gv <

√
s ≪ m ∼ λv. For these non-decoupling

effects to occur it is necessary for fermions and gauge bosons to receive mass from the
same Higgs boson and there must be a hierarchy between Yukawa and gauge coupling,
λ ∼ O(1) ≫ g. In this Chapter we also elaborate on this issue categorising conditions
among couplings where such a situation occurs. A few toy-model examples with two
or three different external gauge bosons are presented. We note in passing that, within
field theory, mixed anomaly cancellations via 4d Green-Shwartz mechanism have been
discussed and analysed phenomenologically in the literature e.g. [112–117].

Our goal here is to construct a perturbative, gauge invariant, one-loop proper ef-
fective vertex for three external gauge bosons that incorporates both chiral anomaly
ambiguities together with non-decoupling effects induced by heavy fermions in an ex-
plicit manner. We would like to apply this effective vertex in order to:

• investigate the interplay between chiral anomaly effects and non-decoupling ef-
fects of individual particles in trilinear gauge boson vertices in the SM and its
extensions,

• categorise all possible models of mixed anomaly cancellations and non-decoupling
effects of very heavy fermions that are directly unreachable at LHC,

• search for phenomenological implications at colliders.

General Lorentz-invariant expressions for three gauge boson vertices have been
analysed in detail in refs. [118, 119]. One-loop corrections in the SM for the VWW ,
where V = Z, γ using dimensional regularisation were considered in [89] with special
emphasis on the non-decoupling effects due to large doublet mass splittings. The first
correct calculation for the Zγγ vertex was performed in ref. [120], while for ZZγ in
ref. [121]. Phenomenological studies including expectations for those interactions at
hadron and lepton colliders were studied in detail in refs. [122–125].

We first present the 1PI effective action for the triple gauge boson vertex and then
we discuss all possible and general non-decoupling effects from heavy fermions. A
variety of applications of the general vertex in the SM, in minimal Z ′ models and their
extensions with a fourth sequential fermion generation, is presented.
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Figure 3.1: The one-loop effective trilinear gauge boson vertex, Γµνρ. The crossed
diagram is obtained with the replacement {ν, ρ} ↔ {ρ, ν} and k1 ↔ k2. Indices
{i, j, k} denote distinct external gauge bosons in general.

3.2 The Trilinear Gauge Boson Vertex

In this section we briefly present the main results for the three gauge boson 1PI vertex,
Γµνρ. The details of this calculation are given in Appendices G and H. Furthermore, the
behaviour of Γµνρ(s) at high energies s, and issues on gauge invariance and Goldstone
Boson Equivalence Theorem are discussed in the subsequent subsections.

3.2.1 The construction of Γµνρ

The relevant diagrams are depicted in Fig. 3.1 and their evaluation is developed in
Appendix H. What we basically need in order to calculate the diagrams in Fig. 3.1 is
the interaction part of the Lagrangian

Lint ⊃ eΨ γµ (α + β γ5) ΨAµ , (3.1)

where Ψ(x) is a 4-component spinor consisting of a pair of two Dirac fermions coupled
chirally to a vector field Aµ(x). Flavour or spinor indices are silently implied. We
shall assume a model interaction for eq. (3.1) that arises from a spontaneously broken
Abelian gauge theory. A toy model as such is described in Appendix G. Then α and β in
eq. (3.1) are real numbers (in units of e) related to linear combinations of hypercharges
[see for instance eq. (G.8)].

The integral representation for this diagram is given in eq. (H.1). By naive power
counting this integral is linearly divergent. This means that when we make a shift of
integration variable, e.g., p→ p+a, the result depends upon the choice of the arbitrary
vector aµ. This change is only reflected in the form factors proportional to k1 and k2 in
Lorentz invariant expansion of Γµνρ [see eq. (3.2) below]. As a result, the naive Ward
Identities (WIs), eqs. (H.15), (H.16) and (H.18) are violated by terms that contain the
arbitrary four vector aµ. It is useful to write this four vector as a linear combination
of the two independent external momenta : aµ = z kµ1 + w kµ2 , with z, w arbitrary real
parameters.
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In order to write out an explicit form for the trilinear gauge boson vertex, say for
three identical massive gauge bosons, we make use of an explicit expression for the
triangle graphs first calculated by Rosenberg [120]. The most general form of the axial
tensor Γµνρ consistent with Lorentz and parity symmetry is:

Γµνρ(k1, k2;w, z) =

[
A1(k1, k2;w) ε

µνρσ k2σ+

+ A2(k1, k2; z) ε
µνρσ k1σ + A3(k1, k2) ε

µρβδ kν2 k1β k2δ+

+ A4(k1, k2) ε
µρβδ kν1 k1β k2δ + A5(k1, k2) ε

µνβδ kρ2 k1β k2δ+

+ A6(k1, k2) ε
µνβδ kρ1 k1β k2δ

]
. (3.2)

By naive power counting the dimensionless form factors A1,2 are infinite. They can be
rendered finite by forcing them to obey the relevant, albeit anomalous, Ward Identities.
However, A1,2 are in general undetermined since they depend on arbitrary parameters
w and z. This arbitrariness can be fixed by physical requirements like for example
conservation of charge. On the other hand the form factors (or integrals) A3,..6 are
finite having dimension of inverse mass square. The latter can be found independently
by direct diagrammatic methods. The whole procedure is described in Appendix H.

Therefore, non-decoupling effects should originate solely from the A1 and A2 parts
of Γµνρ but without any further physical input they are undetermined. A direct calcu-
lation of A1,2 with dimensional regularisation [33] or with Pauli-Villars regularisation
is not a good choice when shifting integration variables within linearly (and above)
divergent Feynman integrals in four dimensions [126–128]. The outcome for a single
external gauge boson (i = j = k in Fig. 3.1) triangle graph is appended in eqs. (H.26),
(H.27) and (H.28). From these expressions and from eq. (3.2) we obtain A1(k1, k2;w)
and A2(k1, k2; z) in terms of the finite integrals A3..6. The corresponding results, in the
case of three identical external gauge bosons, are given by eqs. (H.37) and (H.38) while
the finite integrals A3..6 by eqs. (H.33), (H.34) and (H.35).

Furthermore, although Bose symmetry could constrain the arbitrary numbers w and
z, it is not enough to eliminate them altogether: a physical condition is needed, e.g.,
conservation of electric charge for fermions coupled to external photons or vanishing
triangle graph for on-shell momenta of massive gauge bosons or, even, a pure theoretical
reason, like the decoupling property. It is straightforward, albeit tedious, to generalize
Γµνρ in eq. (3.2) to the case of three distinct external, massive or massless, gauge bosons
(i 6= j 6= k in Fig. 3.1).
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With the assignments depicted in Fig. 3.1, the generalised Ward Identities for ver-
tices µ, ν, ρ are written respectively as1

qµ Γ
µνρ(k1, k2, w, z) = imAi

Γνρ(k1, k2)+

+
e3[(αiαj + βiβj)βk + (αiβj + αjβi)αk]

4π2
ελνρσk1λk2σ(w − z),

(3.3a)

−k1ν Γ̃νρµ(k1, k2, w, z) = imAj
Γ̃ρµ(k1, k2)+

+
e3[(αjαk + βjβk)βi + (αjβk + αkβj)αi]

4π2
ελµρσk1λk2σ(w − 1),

(3.3b)

−k2ρ Γ̂ρµν(k1, k2, w, z) = imAk
Γ̂µν(k1, k2)+

+
e3[(αkαi + βkβi)βj + (αkβi + αiβk)αj]

4π2
ελµνσk1λk2σ(z + 1),

(3.3c)

where the corresponding Γ, Γ̃, and Γ̂ are appended in eqs. (H.47) and (H.48). It is
remarkable here to note the i’th gauge boson mass factor mAi

= −2βi e v in front of
the pseudoscalar 1PI function Γνρ is explicitly given in eq. (H.48). This term and
the analogous in eqs. (3.3b) and (3.3c) are the source of heavy fermion mass non-
decoupling effects since in the formal limit of m → ∞ there is a remaining piece of
order e3ελνρσk1λk2σ/4π

2 in Γµνρ for example. On the other hand it shows that currents
which are associated to unbroken symmetry generators i.e., to massless gauge bosons,
do not provide any non-decoupling effect in Γµνρ. Moreover, Γνρ, Γ̃ρµ, Γ̂µν depend
linearly upon the Yukawa coupling λ, that is responsible for the fermion mass through
the Higgs mechanism and vanishes in the limit of λ→ 02.

Using the WI’s for the vertices ν and ρ, i.e., eqs. (3.3b) and (3.3c) as well as
eq. (3.2), we obtain the following expressions for the integrals A1 and A2:

A1(k1, k2;w) = (k1 · k2)A3 + k21A4 −
e3m2βj
π2

I1(k1, k2,m)+

+
e3[(αjαk + βjβk)βi + (αjβk + αkβj)αi]

4π2
(w − 1) , (3.4a)

A2(k1, k2; z) = (k1 · k2)A6 + k22A5 −
e3m2βk
π2

I2(k1, k2,m)+

+
e3[(αiαk + βiβk)βj + (αiβk + αkβi)αj]

4π2
(z + 1) , (3.4b)

1In order not to clutter the notation we suppress indices i, j, k in the following expressions for Γ’s.
2Throughout, we assume chiral fermions that receive masses via Yukawa interactions with the

Higgs field.
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where the “non-decoupled” integrals are given by

I1(k1, k2,m) =

∫ 1

0

dx

∫ 1−x

0

dy
−(αiαk + βkβi) + 2xβiβk

∆
, (3.5a)

I2(k1, k2,m) =

∫ 1

0

dx

∫ 1−x

0

dy
(αiαj + βiβj)− 2yβiβj

∆
, (3.5b)

with

∆ ≡ ∆(k1, k2) = x(x− 1)k22 + y(y − 1)k21 − 2xyk1 · k2 +m2. (3.6)

The following limits,

lim
m→∞

m2I1(k1, k2,m) = −1

6
(3αiαk + βiβk) , (3.7a)

lim
m→∞

m2I2(k1, k2,m) =
1

6
(3αiαj + βiβj) , (3.7b)

are also useful in simplifying formulae when discussing synergies of anomaly and non-
decoupling terms. We are now ready to complete Γµνρ in eq. (3.2), by reading directly
from eq. (H.47) the finite (in four dimensions) terms A3..6. We find:

A3(k1, k2) = −e
3[(αiαj + βiβj)βk + (αiβj + βiαj)αk]

π2

∫ 1

0

dx

∫ 1−x

0

dy
xy

∆
, (3.8a)

A4(k1, k2) =
e3[(αiαj + βiβj)βk + (αiβj + βiαj)αk]

π2

∫ 1

0

dx

∫ 1−x

0

dy
y(y − 1)

∆
, (3.8b)

A5(k1, k2) = −e
3[(αiαj + βiβj)βk + (αiβj + βiαj)αk]

π2

∫ 1

0

dx

∫ 1−x

0

dy
x(x− 1)

∆
,

(3.8c)

A6(k1, k2) = −A3(k1, k2) . (3.8d)

One could guess the expressions above with i 6= j 6= k from the ones with a single iden-
tical gauge boson i = j = k by exploiting simple combinatoric algebra in eqs. (H.33),
(H.34) and (H.35) and eqs. (H.37) and (H.38). One can check that all the above form
factors obey the Bose symmetry specified in eqs. (H.39a), (H.39b) and (H.39c).

In summary, our main result is the trilinear gauge boson vertex Γµνρ of eq. (3.2),
supplemented by form factor components Ai=1..6 read from eqs. (3.4) and (3.8). Equa-
tion (3.2) satisfies the relevant Ward Identities stated in eq. (3.3) which originate from
the partial conservation of vector and axial vector symmetries in (G.9).
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3.2.2 Unitarity

We can make full use of the effective vertex Γµνρ in order to calculate, as an example,
the matrix element for the process ZZ −→ ZZ with an intermediate massive vector
boson Z ′. We perform the calculation in the center of mass frame with the following
kinematics:

p1 = (E, 0, 0, p) , p2 = (E, 0, 0,−p)
k1 = (E, p sin θ, 0, p cos θ) , k2 = (E,−p sin θ, 0,−p cos θ) ,

ε(p1) =
1

mZ

(p, 0, 0, E) , ε(p2) =
1

mZ

(p, 0, 0,−E) ,

ε∗(k1) =
1

mZ

(p, E sin θ, 0, E cos θ) , ε∗(k2) =
1

mZ

(p,−E sin θ, 0,−E cos θ) ,

where p1 and p2 are the four-momenta of incoming particles, k1 and k2 the four-
momenta of outgoing particles, ε(p1), ε(p2), ε

∗(k1), ε
∗(k2) are the polarisation vectors

of the incoming and outgoing particles respectively and θ is the scattering angle of
the outgoing Z-boson in the center of mass frame. Non-zero contributions arise only
from t and u-channels since the s-channel amplitude vanishes in this frame. Working
in the unitary gauge, we find a contribution to ZZ → ZZ due to loop-induced Γµνρ

Z′ZZ

of eq. (3.2) as,

M = Mt + Mu =

(
E2 sin2 θ

t−m2
Z′

)[
(A1 − A2) + p2 (1− cos θ) (A3 − A6)

]2

+

(
E2 sin2 θ

u−m2
Z

′

)[
(A1 − A2) + p2 (1 + cos θ) (A3 − A6)

]2
, (3.9)

where t = (p1 − k1)
2 = −2 p2(1 − cos θ) and u = (k1 − p2)

2 = −2 p2(1 + cos θ). The
factors A1 and A2 in eq. (3.4) are dimensionless and, in the limit of E2 → ∞ vary
at worse as constants while from eq. (3.8) we have A3 = −A6 which asymptotically
go like E−2. Therefore, at high energies E2 → ∞, terms inside the square brackets
in eq. (3.9) behave like constants and so the amplitude does at high energies. This
means that unitarity is satisfied as is of course expected for a renormalised theory. It
is worthwhile noting that in the limit E2 → ∞ we obtain (A1 −A2) ∝ c(w− z) where
c is an anomaly pre-factor present in the second term in the r.h.s of eq. (3.3a). There
is still however a finite and non-vanishing constant contribution from the A3,6 form
factors in eq. (3.9) which for every particle contribution reads,

lim
E2→∞

M = −
( c

4π2

)2

sin2 θ

[
1 + 2(w − z) +

(w − z)2

2 sin2 θ

]
. (3.10)

We observe that the unknown parameters w and z still remain in the amplitude. Only
the relation w = z removes them from the asymptotic limit. We shall come back at
this point when discussing the Z ′∗ZZ-vertex in section 3.4.3.
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3.2.3 Goldstone boson Equivalence Theorem and Rξ - inde-
pendence

There are several ways to derive the Ward Identities of eq. (3.3). A classical method
is to demand invariance of the path integral under the combined local vector and
axial-vector gauge transformations (G.9). We can then represent these WI’s diagram-
matically to prove the Goldstone Boson Equivalence Theorem [129–131]. This is most
clearly explained in Lorentz gauge (ξ = 0) where the gauge fixing term (G.10) does not
involve the Goldstone boson field ϕ. Then conservation of the gauge current implies

Figure 3.2: Graphical representation of the WI in eq. (3.3a).

that qµ can be contracted directly with Γµνρ and also with the derivatively coupled
Goldstone boson to Γνρ. In principle there is a third contribution from possible mix-
ings with other gauge bosons, say Z ′, that couple to the same fermions in the vertex.
This last mixing must necessarily be proportional to (gµλ − qµqλ/q

2) and when con-
tracted with qµ, vanishes. Therefore, by using rules from the toy model in Appendix
G, it is straightforward to see that we recover the classical WI (3.3a), without the
anomaly term. While a possible gauge boson mixing contributes to Γµνρ, it does not
contribute to WIs in eq.(3.3). At very high energy, the longitudinal polarization vec-
tor is εLµ(q) ≃ qµ/mA, where mA is the gauge boson mass. In other words for an
anomaly-free model, eq. (3.3a) or the sum of the diagrams in Fig. 3.2, can be written
as,

ǫLµ(q) Γ
µνρ = iΓνρ . (3.11)

This equation tells us that at the high energy limit, the physical amplitude with the
gauge boson in vertex µ is replaced by the vertex with a Goldstone boson that ‘has
been eaten’. However, as is evident from eq. (3.3a) the relation (3.11) is broken by
possible gauge anomalies. This is another reason why the latter should be absent.

One can easily check by studying for example the fermion-antifermion annihilation
process to two gauge bosons with the toy model of Appendix G, that eq. (3.11) is the
required condition for the amplitude to be gauge ξ-independent. Again the anomaly-
term must be absent.
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3.3 Non-Decoupling Effects

Heavy fermion non-decoupling effects can be cast in two classes :

A) effects that arise from a large mass splitting between particles within an anomaly-
free multiplet.

B) anomaly driven effects that originate from decoupling a whole anomaly-free mul-
tiplet.

In case (A), formal decoupling of the heavy particle that participates in the anomaly
cancellation mechanism will leave at low energies an effective Lagrangian ∆Γµνρ that
accounts for the anomaly cancellation missing piece [98,99,103]. In case (B), the Higgs
coupling to fermions will be much larger than the gauge coupling with the latter being
approximately zero when the fermion mass is going to infinity [110,111].

3.3.1 Non-Decoupling due to large mass splitting

We are going to focus first on the simplest case with three identical external gauge
bosons. This means we set i = j = k in the Ward Identities of eq. (3.3), or else we look
directly at expressions, (H.26) - (H.28). In order to carry out a systematic study of
non-decoupling effects and their interplay with chiral anomalies, it is essential to keep
track of the anomalous terms that depend on the arbitrary parameters w and z. By
exploiting Bose symmetries for on-shell external gauge bosons, and specifically, (H.39)
among legs j and k we find w = −z, while with (H.40) among legs i and j we find
(after some tedious algebra) 2w − z − 1 = 0. The solution of this system,

w = −z =
1

3
, (3.12)

finally fixes the arbitrary parameters w and z. Our observation is that these fixed
values for the arbitrary parameters correspond to the case of a particle decoupling
from the effective action, i.e.,

lim
m→∞

Γµνρ(k1, k2;w, z) = 0 ⇒ w = −z = 1

3
. (3.13)
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We elaborate this point in what follows. The WIs now take the form:

qµΓ
µνρ(k1, k2;w = 1/3) = −e

3βm2

π2
ελνρσ k1λ k2σ I0(k1, k2;m) +

+
e3(β3 + 3α2β)

6π2
ελνρσ k1λ k2σ . (3.14a)

−k1νΓ̃νρµ(k1, k2;w = 1/3) = −e
3βm2

π2
ελµρσ k1λ k2σ I1(k1, k2;m)−

− e3(β3 + 3α2β)

6π2
ελµρσ k1λk2σ , (3.14b)

−k2ρΓ̂ρµν(k1, k2;w = 1/3) = −e
3βm2

π2
ελµνσ k1λ k2σ I2(k1, k2;m) +

+
e3(β3 + 3α2β)

6π2
ελµνσ k1λk2σ , (3.14c)

where the integrals I0,1,2 are defined in eqs. (H.5), (H.22) and (H.23) respectively.
The anomalous terms in eq. (3.14) are then allocated “democratically” in the three
legs of Γµνρ as one would have naively expected. Note also that since we find the
following limits, limm→∞m2I0 = − limm→∞m2I1 = limm→∞m2I2 = 1

6
(β2 + 3α2), the

r.h.s of eqs. (3.14a), (3.14b) and (3.14c) cancel identically, verifying our statement in
eq. (3.13). Therefore, for a Dirac fermion pair circulating the loop as shown in Fig. 3.1
and for three identical external gauge bosons, at the formal decoupling limit, the finite
contributions are equal and opposite to the anomaly contributions in the vertex. In a
Lorentz gauge, terms in Γµνρ proportional to I0,1,2 arise from the mixing between the
Goldstone boson ϕ and the gauge boson as it is shown in Fig. 3.2. We should notice
however, that our calculation of WIs in eq. (3.14) given in Appendix H contains no
reference to a particular gauge choice.

For a Lorentz-invariant and renormalizable chiral gauge theory the anomaly terms
i.e., the last terms on the r.h.s of eqs. (3.14), have to be absent. The only way3,
consistent with renormalizability4 [96,97], to remove the anomaly terms, is to add a new
Dirac fermion pair with opposite β i.e., opposite hypercharges YL and YR. A consistent
way to describe heavy fermion decoupling effects is to perform the calculation directly
in the broken phase of the theory where physical masses appear explicitly. Assuming
that the mass of the second (heavy) pair and the c.m energy, s = (k1 + k2)

2, is much
bigger than the first (light) fermion, say, m2

2 ≫ s ≫ m2
1 ≈ 0, there is a non-decoupled

term in the 1PI effective action which can be read off from eqs. (H.32), (H.37) and
(H.38) [or eqs. (3.2) and (3.4) for i = j = k] to be,

∆Γµνρ(k1, k2) ≈
e3 (β3 + 3α2β)

6π2
εµνρσ (k1 − k2)σ . (3.15)

3Of course there is the trivial case of vector multiplets i.e., β = 0.
4We are not going to consider here the situation [112] of incorporating non-renormalizable coun-

terterms to cancel the anomalies at the expense of introducing a cut-off scale Λ ∼ 4πv.
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This term remains in the 1PI effective function for the light particle. In the heavy
mass limit (m2 → ∞), the form factors Ai=3,...6(k1, k2) vanish as 1/m2 leaving only
the term eq. (3.15) in the low energy effective action which has no ‘memory’ anymore
from the heavy mass m2. Although, the exact non-kinematic prefactor in eq. (3.15),
depends upon model details, its magnitude (in e-units) is approximately, α/π and could
be observable. Furthermore, the non-decoupling term eq. (3.15) does not depend on
the regularization scheme, i.e., on the parameters w and z in eqs. (H.37) and (H.38),
since the model is by construction anomaly-free.

3.3.2 Anomaly Driven non-decoupling effects

This is a category of possible non-decoupling effects for models possessing an anomaly-
free cluster of heavy particles just above those known from the Standard Model. We
systematically then check anomaly cancellation conditions in Ward Identities (eq. 3.3)
by demanding the pre-factors of I1,2 integrals in eqs. (3.4a) and (3.4b) to be non-zero.
We are seeking for minimal models with up-to three different gauge bosons and up to
the least n-Dirac fermions.

A model that contains one gauge boson X, with V-A couplings as in eq. (3.1),
coupled to only one fermion is impossible to exist because it is anomalous (except the
trivial case of a vector-like particle where β = 0). Adding an extra fermion with the
same mass but with opposite axial-vector coupling (β) renders the model anomaly-free.
Such a simple particle content does not lead to non-decoupling effects because all these
effects are proportional to an odd power of the axial-vector coupling (∼ β2k+1) and
therefore the sum over the two fermions vanishes. A similar situation arises when more
fermions are circulating in the loop.

More interesting is the case where one has two, distinct, external gauge bosons, X
and Y , either massive or massless. The cancelation of trilinear anomalies requires the
existence of at least two fermions with opposite axial-vector couplings but again it is
impossible to satisfy instantaneously the mixed anomaly and non-decoupling conditions
[see below]. We first obtain the general conditions for an anomaly free model with two
gauge bosons X and Y . In notation of eq. (3.1) these conditions read:

n∑

i=1

(β3
X + 3α2

XβX)i = 0 , (3.16a)

n∑

i=1

(β3
Y + 3α2

Y βY )i = 0 , (3.16b)

n∑

i=1

(β2
XβY + 2αXαY βX + α2

XβY )i = 0 , (3.16c)

n∑

i=1

(β2
Y βX + 2αXαY βY + α2

Y βX)i = 0 , (3.16d)

where n is the total number of fermions. Starting from trilinear anomalies eq. (3.16a) or
eq. (3.16b) we see that the case n = 1 requires only vectorial couplings, βX = βY = 0.
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ψ1 ψ2 ψ3

U(1)X α = e, β = −e α = e, β = e α = 0, β = 0
U(1)Y α = −e, β = −e α = 0, β = 0 α = e, β = e

Table 3.1: Charges of an anomaly-free model with non-decoupling remnants in three
gauge boson vertices XXY and Y Y X.

Therefore for n = 1 there is no non-trivial solution. For n = 2 the non-zero couplings
must satisfy the following conditions:

βX2 = −βX1, αX2 = ±αX1

βY 2 = −βY 1, αY 2 = ±αY 1 . (3.17)

Turning to mixed anomalies, eq. (3.16c) and eq. (3.16d), it is amusing first that they
are satisfied even with one internal fermion (n = 1), iff

βX = αX , βY = −αY , (3.18)

or

βX = −αX , βY = αY . (3.19)

Non-decoupling conditions are derived by the requirement that the pre-factors of
I1 and I2 integrals in eqs. (3.4a) and (3.4b) are non-zero. Hence, in the limit of
k21, k

2
2 ≃ s≪ m2 at least one of the following algebraic expressions,

n∑

i=1

(β2
XβY + 3αXαY βX)i ,

n∑

i=1

(β2
XβY + 3α2

XβY )i ,

n∑

i=1

(β2
Y βX + 3αXαY βY )i ,

n∑

i=1

(β2
Y βX + 3α2

Y βX)i , (3.20)

must be non-vanishing. For n = 1 the choice of eq. (3.18) [or eq. (3.19)] which eliminates
the mixed anomalies, sets also eqs. (3.20) to a non-zero value. However, to cancel the
XXX and Y Y Y anomalies one needs at least n = 2 fermions to satisfy the conditions
in eq.(3.17). These set the non-decoupling expressions (3.20) back to zero. The first
non-trivial solution of the system of eqs. (3.16) and (3.20) arises with three pairs of
chiral Dirac fermions (n = 3) with an example of quantum numbers given in Table 3.1.
Here, we use eq. (3.18) and eq. (3.19) to cancel mixed anomalies for ψ1. The other two
particles ψ2 and ψ3 are singlets under U(1)Y and U(1)X , respectively. Plug these into
eqs. (H.32), (3.4) and (3.7), we obtain the non-vanishing operators at the decoupling
limit:

Γµνρ
XY Y = Γµνρ

Y XX =
e3

3π2
εµνρσ (k2 − k1)σ , (3.21a)

Γµνρ
XY X = Γµνρ

Y XY = − e3

3π2
εµνρσ (2k2 + k1)σ , (3.21b)

Γµνρ
XXX = Γµνρ

Y Y Y = 0 . (3.21c)
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ψ1 ψ2 χ1 χ2

U(1)X α = e1, β = 0 α = e2, β = 0 α = e3+e4
2
, β = e3−e4

2
α = e3+e4

2
, β = − e3−e4

2

U(1)Y α = 0, β = −q1 α = 0, β = q1 α = q2, β = 0 α = −q2, β = 0

Table 3.2: Charges of all fermions with respect to the gauge groups U(1)X × U(1)Y .

Next is a model example with n = 4 Dirac fermions charged under the product of
gauge groups U(1)X ×U(1)Y . This toy model has been examined in ref. [110]. Charge
assignments are given in Table 3.2. They are chosen in such a way that triangular
anomalies [U(1)X ]

3 and [U(1)Y ]
3 are canceled separately. The cancelation of mixed

anomalies requires the extra condition q2 = q1
(e2

1
−e2

2
)

(e2
3
−e2

4
)
. Charges in Table 3.2 follow the

general rules of eqs. (3.17). If we assume that all extra fermions have a common mass
m and are all very heavy, then in the low energy limit we find the following expressions
for the effective vertices with different combinations of external gauge bosons:

Γµνρ
XXX = Γµνρ

Y Y Y = 0 , (3.22a)

Γµνρ
XXY =

q1(e
2
1 − e22)

4π2
(2k1 + k2)σε

µνρσ , (3.22b)

Γµνρ
Y XX =

q1(e
2
1 − e22)

4π2
(k2 − k1)σε

µνρσ , (3.22c)

Γµνρ
XY Y = Γµνρ

Y XY = 0 . (3.22d)

These contributions arise from terms that are proportional to I1 and I2-integrals taking
into account that this model is anomaly-free. Such a situation should never occur in
the SM. The basic difference is that neither gauge bosons X and Y is purely vector-
like for the entire fermionic sector i.e., X and Y must be strictly massive. This is a
crucial difference that leads to the existence of remnants in the low energy limit. On
the contrary, the existence of the photon in the SM leads to a term related to I1 or I2
which always vanishes for an anomaly-free model.

We have also worked out the case with three different gauge bosons. The cor-
responding 10 independent anomaly-free, and, 18 independent non-decoupling con-
ditions, are quite involved and are presented separately in Appendix K. Again the
non-decoupling effects arise for n ≥ 3. The new feature that appear in this category
is the fact that one can exploit non-decoupling effects where one of the gauge bosons
is massless. Such a minimal (n = 3) example comes into sight if we adopt the charge
assignments shown in Table 3.3. Notice that all fermions have βY = 0 i.e., the Y
couples purely to a vector current.

We can easily check that the conditions (K.1) for an anomaly-free model are satisfied
while at the same time some of the expressions in (K.2) are non zero.
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ψ1 ψ2 ψ3

U(1)X α = e, β = e α = e, β = −e α = 0, β = 0
U(1)Y α = e, β = 0 α = e, β = 0 α = e, β = 0
U(1)Z α = e, β = −e α = 0, β = 0 α = e, β = e

Table 3.3: Charges of an anomaly-free model with non-decoupling remnants in three
gauge boson vertex XY Z.

The non-zero effective vertices can be written in the form,

Γµνρ
XXZ = −Γµνρ

ZZX =
e3

3π2
(2k1 + k2)σε

µνρσ , (3.23a)

Γµνρ
XZX = −Γµνρ

ZXZ = − e3

3π2
(2k2 + k1)σε

µνρσ , (3.23b)

Γµνρ
ZXX = −ΓXZZ =

e3

3π2
(k1 − k2)σε

µνρσ , (3.23c)

Γµνρ
Y XZ = Γµνρ

Y ZX =
e3

2π2
(k1 + k2)σε

µνρσ , (3.23d)

Γµνρ
XY Z = −Γµνρ

ZY X =
e3

2π2
k1σε

µνρσ , (3.23e)

Γµνρ
XZY = Γµνρ

ZXY = − e3

2π2
k2σε

µνρσ . (3.23f)

We observe that heavy fermion non-decoupling effects appear in eq. (3.23e) and (3.23f).
If a model like this, with X = Z ′, Y = γ, Z = Z can be embedded in the SM, then
it would in principle allow for decays like Z ′ → Zγ that do not depend on the heavy
fermion masses.

We should finally remark that in models considered in Tables 3.1-3.3, gravitational
anomalies cancel out since it is always

∑
f β

X
f = 0 for a given axial vector coupling

between a vector boson X and a fermion f .
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3.4 Applications

3.4.1 Standard Model

Focusing first in the Standard Model with neutral, Z or γ triple gauge boson vertices,
we need only to consider the interaction Lagrangian with fermions. This reads as:

Lint =
∑

f

αγ
fAµΨfγ

µΨf +
∑

f

ZµΨfγ
µ(αZ

f + βZ
f γ5)Ψf , (3.24)

where the factors αV
f , β

V
f with V = γ, Z are

αγ
f = eQf , βγ

f = 0 ,

αZ
f =

gZ
2

(T 3
fL

− 2 s2wQf ) , βZ
f = −gZ

2
T 3
fL
, (3.25)

and T 3
fL

and Qf are the third component of weak isospin and charge of the SM Dirac
fermions f = ν, e, u, d, respectively. Explicitly in the SM, the prefactors αV

f and βZ
f

take the form:

αγ
u =

2

3
e , αZ

u =
gZ
2
(
1

2
− 4

3
s2w) , βZ

u = −gZ
4
,

αγ
d = −1

3
e , αZ

d =
gZ
2
(−1

2
+

2

3
s2w) , βZ

d =
gZ
4
,

αγ
e = −e , αZ

e =
gZ
2
(−1

2
+ 2s2w) , βZ

e =
gZ
4

αγ
ν = 0 , αZ

ν =
gZ
4
, βZ

ν = −gZ
4
, (3.26)

where gZ = e/sw is the weak boson gauge coupling and sw, cw are the sinus and cosinus
of the weak mixing angle.

V ∗ZZ

Our first application refers to the vertex V ∗ZZ with V = γ, Z being off-shell. This
interaction has been searched for at LEP and Tevatron while is currently under scrutiny
at the LHC. At one loop level the only CP-conserving contribution arises from the
triangle graph in Fig. 3.1. Applying our general form of the 1PI vertex in eq. (3.2) and
making use of the Bose symmetry ν ↔ µ, k1 ↔ k2 as in eq. (H.39), we find:

Γµνρ
V ∗ZZ(k1, k2;w) =

[
ǫµνρσ(k1 − k2)σ

(
−A1 +

s

2
A3

)
+ A3 q

µǫρβνδk1βk2δ

]
, (3.27)

where the polarization vectors ǫ∗ν(k1), ǫ
∗
ρ(k2) outside the square brackets have been

omitted, and also, we set A1(k1, k2) ≡ A1, ... etc for simplicity. More specifically, A1 is
ambiguous: it depends on how the momentum is routing the loop i.e., the parameter
w. This arbitrariness (or regularization scheme dependence if you wish) is further fixed
by exploiting the fact that the ZZZ on-shell boson vertex vanishes by Bose symmetry.
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The latter requires w = 1/3. On the other hand, for the vertex γZZ, conservation of
the vector current and Bose symmetry implies that w = z = 0.

Having specified the arbitrary parameters w and z we apply our general expressions
for A1 and A3 found in eqs. (3.4a) and (3.8a), specifically to the vertices Z∗ZZ and
γ∗ZZ and sum over all SM fermions. By ignoring (see below however), the last term
proportional to qµ in eq. (3.27), we can easily find,

Γµνρ
Z∗ZZ(k1, k2) = ǫµνρσ(k1 − k2)σ×

×
∑

f=u,d,e,ν

[
m2

Z(A3f − A4f ) +
m2

fβ
Z
f

π2
I1f +

1

6π2

(
βZ 3
f + 3βZ

f α
Z 2
f

)
]

≡ ǫµνρσ(k1 − k2)σ ΓZ∗ZZ(s) , (3.28)

Γµνρ
γ∗ZZ(k1, k2) = ǫµνρσ(k1 − k2)σ

∑

f=u,d,e,ν

[
m2

Z(A3f − A4f ) +
m2

fβ
Z
f

π2
I1f +

1

2π2
αγ
fα

Z
f β

Z
f

]

≡ ǫµνρσ(k1 − k2)σΓγ∗ZZ(s) , (3.29)

where s = (k1 + k2)
2 and I1f is given by eq. (3.5a). The last term in eqs. (3.28) and

(3.29) is the anomaly contribution, while the second term is a non-decoupling one in the
limit of heavy fermion mass, mf → ∞. Again we should notice here that in this limit
and for one fermion contribution, the last two terms mutually cancel while the first
term vanishes as m2

Z/m
2
f . Therefore, the decoupling of heavy fermions in V ∗ZZ vertex

is operative even if those fermions have vastly different, but always much greater than
the EW scale, masses among each other. In the SM for example, what is left behind
after the decoupling of the top quark is a theory with an anomalous (sometimes called
Chern-Simons) term that is necessary to render the effective low energy theory gauge
invariant.

Especially for γ∗ZZ one can go one step further and write the whole effective vertex
in terms of one integral only, namely

Γγ∗ZZ(s) =
s

2

∑

f=u,d,e,ν

A3f (s) . (3.30)

Now bringing back the last term on the r.h.s of eq. (3.27) we find a perfectly fine and
gauge invariant form for γ∗ZZ vertex,

Γµνρ
γ∗ZZ(s) =

∑

f

sA3f

2
×

[
ǫµνρσ(k1 − k2)σ −

ǫνρβσqµqβ
s

(k1 − k2)σ

]
. (3.31)

This vertex must be proportional to s in order to cancel the pole contribution arising
at s = q2 = 0 [118]. This is a generic statement for all γ∗V V vertices we address below.
One should recall that this expression has been derived only after fixing the anomaly
coefficients, w and z, by symmetry requirements. We could have done the reverse:
to fix w, z from the requirement of no pole contribution in eq. (3.31). In a way, the
anomaly and the non-decoupled terms have been absorbed in the finite integral A3.
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It is now evident from eqs. (3.30) and (3.8) that Γγ∗ZZ(s → 0) = 0 for every fermion
contribution, independently. Furthermore, as expected, for asymptotic values of s we
also observe that Γγ∗ZZ(s→ ∞) = 0 after summing over all SM fermion contributions.

Within one generation of fermions, the SM is a chiral, gauge, and anomaly-free
Quantum Field Theory (QFT). As a result, contributions to ΓV ∗ZZ from (approxi-
mately) massless generations, vanish identically (recall that form factors A3, 4 are pro-
portional to the anomaly factors, [see eqs. (3.8a) and (3.8b)] and the second term
vanishes in the massless case). Therefore to a good approximation, for

√
s & 2MZ ,

the only non-negligible contribution to ΓV ∗ZZ arises from the third generation and is
due to the large mass difference between the top quark and all other fermions. The
top quark influences mainly the last two terms in the square bracket of ΓZ∗ZZ and
Γγ∗ZZ in eqs. (3.28) and (3.29). If we make the (numerically crude) approximation of
m2

Z ≪ s < m2
t and exploit eq. (J.12c) from Appendix J, we find (Nc = 3 is the color

factor),

m2
tβ

Z
t

π2
I1t ≈ − Nc

6π2

(
βZ 3
t + 3βZ

t α
Z 2
t

)
− Nc

120π2
(βZ 3

t + 5βZ
t α

Z 2
t )

s

m2
t

. (3.32)

The first term is just the opposite of the top quark anomaly contribution in ΓZ∗ZZ

and they both cancel out in the limit of heavy top quark. One can prove easily this
statement for all SM vertices, ΓV ∗V V , V = Z, γ appearing below in this Chapter and we
claim, following the arguments of section 3.3, that this is a general theorem: a heavy
particle cancels its own anomaly contribution in a triple gauge boson vertex and at the
(non-perturbative) limit of m→ ∞ leaving no trace from itself behind. Of course in the
top-less SM the last term in ΓZ∗ZZ does not vanish since the particle content (τ, ντ , b)
is now anomalous. It is also evident from eq. (3.32) that the behaviour of ΓZ∗ZZ(s)
at s ≈ m2

t rises approximately linearly with s as s/m2
t . This is also verified from our

numerical result shown in Fig.3.3a. Similar conclusions one can derive for Γγ∗ZZ as it
is shown in Fig.3.3b, but this is rather obvious now because of eq. (3.30).

Furthermore, it is also instructive to study the behaviour of the vertices ΓV ∗ZZ(s)
in the asymptotic region, s ≫ m2

t > m2
Z . By exploiting eq. (J.13) and keeping only

terms of order m2
f/s we arrive at the following expression,

ΓZ∗ZZ(s≫ m2
t ) ≈ Nc

m2
t

s

{
2βZ 3

t

π2

(
2− ln

s

m2
t

− iπ

)
+

+
βZ 3
t + αZ 2

t βZ
t

π2

(
1

2
ln2 s

m2
t

− π2

2
+ iπ ln

s

m2
t

)}
, (3.33)

in which both real and imaginary parts vanish at asymptotic values of s as they should
following unitarity arguments. The effect of a “heavy” particle (here the top quark) is
to just delay the “falling off” of |ΓZ∗ZZ(s)| [see Fig.3.3a.] as s→ ∞. Finally it is also
obvious that the real and imaginary part of ΓZ∗ZZ are of the same order of magnitude,
a situation which remains true everywhere after the threshold energy, s & 4m2

t .
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Translating our numerical results for the SM to the notation of ref. [118]5 that
is usually followed by the theoretical and experimental literature, we find for LEP
energies and mt = 173 GeV, that

fZ
5 (

√
s = 200 GeV) = 1.8× 10−4 , (3.34)

fγ
5 (
√
s = 200 GeV) = 2.1× 10−4 , (3.35)

where we have neglected small imaginary part contributions from light quark and lepton
mass thresholds. These results agree with those quoted in ref. [124]. Unfortunately,
they are too small to have been reached by LEP [132].

Just above the top quark threshold energies s ≥ 4m2
t , the vertex develops a signif-

icant absorptive part. This is apparent from our analytical expressions in Appendix J
for integrals A3..6 and I1, 2 and the discussion above. For

√
s = 500 GeV we find :

fZ
5 (

√
s = 500 GeV) = (0.4− 0.5i)× 10−4 , (3.36)

fγ
5 (
√
s = 500 GeV) = (−0.3 + 0.3i)× 10−4 . (3.37)

Note again that the imaginary part of the amplitude is of the same order of magnitude
as the real part.

V ∗γZ

Another non-trivial class among trilinear neutral gauge boson vertices that have been
and being searched for at colliders, is the amplitude V ∗γZ. In the notation of Fig. 3.1,
we assign V ∗

µ (q), γν(k1) and Zρ(k2) to the 1PI effective vertex Γµνρ
V ∗γZ of eq. (3.2) with

V = Z, γ. When the photon and the Z-gauge boson are both on-shell we find:

Γµνρ
V ∗γZ(k1, k2) = ǫµνρσ k1σ

(
A2 +

s+m2
Z

2
A3

)
+

+ ǫµρβδqν qβ k2δ (A3 + A6) + ǫνρβδqµk1βk2δ A3 . (3.38)

We have seen however in eq. (3.8d) that A3 = −A6 and therefore the second term in
eq. (3.38) vanishes at one-loop. Furthermore, the last term when coupled to a light
quark or lepton vector current, is proportional to the mass of the incoming fermions and
for current collider architectures this contribution is negligible6. Hence, only the first
term remains with potentially visible effects. When all external particles are on-shell,
Bose symmetry and gauge invariance require the vertex V γZ to vanish. Bose symmetry
relations among form factors and gauge invariance fix the arbitrary parameters w and
z to be:

ZγZ : w = 1 , z = 0 , (3.39)

γγZ : w = 1 , z = 1 . (3.40)

5We multiply ΓV ∗ZZ(s) in eqs. (3.28) and (3.29) with em2
Z/(s−m2

V ).
6This term however is important for gauge invariance to be preserved, as in eq. (3.31) before.
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Figure 3.3: The dependence of |ΓV ∗V V (s)| with
√
s for different gauge bosons combi-

nations, V = γ, Z : (a) Z∗ZZ, (b) γ∗ZZ, (c) Z∗γZ, (d) γ∗γZ, (e) Z∗γγ. The solid
curve corresponds to the SM, the dashed curve corresponds to the SM + 4th generation
fermion model. Masses for light quarks and leptons are neglected while mt = 173 GeV.
Fourth generation quarks and lepton masses are taken as in eq. (3.66).

By substituting the form in A2 from the general expression of eq. (3.4b) we obtain:

Γµνρ
Z∗γZ(k1, k2) = ǫµνρσk1σ

∑

f=u,d,e,ν

[
m2

Z(A3f + A5f )−
m2

fβ
Z
f

π2
I2f +

1

2π2
αZ
f α

γ
fβ

Z
f

]

≡ ǫµνρσk1σ ΓZ∗γZ(s) , (3.41)

Γµνρ
γ∗γZ(k1, k2) = ǫµνρσk1σ

∑

f=u,d,e,ν

[
m2

Z(A3f + A5f )−
m2

fβ
Z
f

π2
I2f +

1

2π2
αγ
fα

γ
fβ

Z
f

]

≡ ǫµνρσk1σ Γγ∗γZ(s) . (3.42)
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One should notice that the square bracket of ΓZ∗γZ is approximately equal to Γγ∗ZZ

since in this case A5 ≃ −A4 and I1 ≃ −I2.
It is amazing to see how greatly the γ∗γZ-vertex is simplified. Placing back the

last term of eq. (3.38) in order to restore gauge invariance, we find,

Γµνρ
γ∗γZ(s) =

∑

f

sA3f ×
[
ǫµνρσk1σ −

ǫνρβσqµk2βk1σ
s

]
. (3.43)

The s-factor outside the vertex is expected because it must cancel the pole behaviour
of the second term in the square bracket. Once again, the “physical” choice of w, z
in the anomalous terms played a crucial role in eq. (3.43) like in the case of γ∗ZZ
vertex. Regarding decoupling effects, eq. (3.43) is self explained: for every particle
contribution, a synergy between anomaly and non-decoupling terms results in a well
defined integral sA3f that vanishes asymptotically due to the anomaly-free condition.
If however, the energy

√
s is between two particle masses which combined render the

model anomaly-free, then there should be non decoupling effects in this regime. On the
other hand, adding to the SM, anomaly-free and heavy chiral fermions, there should
be no-nondecoupling effect remaining in the low energy regime where

√
s . 2mt.

One can go one step further also in the case of Z∗γZ in eq. (3.41). In fact, we can
eliminate I2f and the anomaly factors from eq. (3.41) leaving only the finite integrals
A3 and A5, as:

ΓZ∗γZ(s) =
1

2

∑

f

[
(s+m2

Z)A3f +m2
ZA5f

]
. (3.44)

After using few integral tricks, like for example the ones of eq. (H.44), it is easy to show
that ΓZ∗γZ(s) behaves like (s−m2

Z)A3f near the Z-pole and ΓV ∗γZ ∝
∑

f (s−m2
V )A3f .

This is clearly verified when performing the full numerical evaluation of the integrals
as in Figs. 3.3c, 3.3d.

One can easily see from further working out eqs. (3.41) and (3.42) that due to the
fact that the SM is an anomaly free QFT, the whole contribution arises to a very good
approximation from particles of the third generation. Numerically, in the conventions
of ref. [118] [see also footnote 4], we find for LEP energies

hZ3 (
√
s = 200 GeV) = 2.1× 10−4 , (3.45)

hγ3(
√
s = 200 GeV) = 7.2× 10−4 , (3.46)

up to tiny small imaginary parts. These results are in agreement with those presented in
ref. [124]. As we have noticed above it is also confirmed numerically that |fγ

5 | ≃ |hγ3 |.
SM predictions of eqs. (3.47) and (3.48) are in the best case [for hγ3 ] two orders of
magnitude below the published LEP bounds [132].

For comparison, at higher energies the SM predicts:

hZ3 (
√
s = 500 GeV) = (0.3− 0.6 i)× 10−4 , (3.47)

hγ3(
√
s = 500 GeV) = (0.9− 1.8 i)× 10−4 . (3.48)
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Full numerical results for |ΓV ∗γZ(s)| are represented by solid lines in Figs. 3.3c, 3.3d.
We observe that in the neighborhood of the top threshold, |Γγ∗γZ(s)| is one order
of magnitude bigger than |ΓZ∗γZ(s)|. They are both however far below the current
Tevatron and LHC sensitivity [133,134]. Following the projecting sensitivity calculated
in ref. [122], observation at the LHC (14 TeV) seems extremely difficult within SM,
even for the γγZ vertex.

V ∗γγ

We now turn our discussion to the last SM neutral triple gauge boson vertex, the
V ∗γγ. Of course, thanks to Furry’s theorem only the case V = Z is valid (for V = γ
all three currents are vector-like, i.e., βi = 0). However, even in Z∗γγ there are no
non-decoupling effects since there is no would be Goldstone boson associated with the
unbroken U(1)em, i.e., the final particles are massless. Nevertheless, one can write a
simple Z∗γγ 1PI vertex. We obtain:

Γµνρ
Z∗γγ(k1, k2) = ǫνρβδqµk1βk2δ [A3] +

βZ
f (α

γ
f )

2

4π2
ǫµνρσ [(w − 1) k2 + (z + 1) k1]σ . (3.49)

Landau [135] and Yang [136] say that the on-shell amplitute, ǫµ(q)Γ
µνρ
Z∗γγ(k1, k2) must

vanish due to selection rules on space inversion and angular momentum conservation.
This fixes the arbitrary parameters w = −z = 1 for every fermion contribution f . One
obtains the same values for w and z from U(1)em gauge invariance, i.e., satisfaction of
Ward Identities. Although it is necessary to preserve gauge invariance, this remaining
contribution is negligible for light s-channel incoming particles e.g., e+e− → γγ, but
nevertheless it may be important for heavy external particles like for example dark
matter particles or heavy neutrinos annihilating into photons (see related work in
refs. [137, 138]).

Defining ΓZ∗γγ(s) ≡ ∑
f m

2
Z A3f (s) and summing over the SM particles, we find

numerically,

ΓZ∗γγ(
√
s = 200 GeV) = 2.9× 10−4 , (3.50)

ΓZ∗γγ(
√
s = 500 GeV) = (3.2− 5.6 i)× 10−5 . (3.51)

For various values of s, the function |ΓZ∗γγ(s)| is plotted in Fig. 3.3e. Notably, at very
small s this quantity behaves like 1/s and in contrary to the previous Z∗V V vertices
does not vanish at s = m2

Z . For general values of s, and k
2
1 = k22 = 0, ΓZ∗γγ(s) is easily

written as:

ΓZ∗γγ(s) =
∑

f

βZ
f (α

γ
f )

2

2π2

m2
Z

s
ξf J(ξf ) , (3.52)

where ξf ≡ 4m2
f/m

2
Z and the function J(ξf ) is appended in eq. (J.2).
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For energies (s) below the top quark threshold, ΓZ∗γγ(s), approximately takes the
form,

ΓZ∗γγ(s) ≡
∑

f

m2
ZA3f (m

2
Z < s < m2

t ) ≈

≈ −Nc
βZ
t α

γ 2
t

π2

[
m2

Z

2s
+

(
m2

Z

m2
t

)(
1

24
+

1

180

s

m2
t

)]
, (3.53)

a behaviour which shows decoupling of a heavy top-quark mass. This follows our
general statement just below eq. (3.32): since the anomaly term in eq. (3.49) vanishes
due to the physical choice of w and z there is no non-decoupled remnant to cancel it.
In the asymptotic region we find:

ΓZ∗γγ(s≫ m2
Z ,m

2
t ) ≈ Nc

βZ
t α

γ 2
t

2π2

(
m2

Zm
2
t

s2

) [
ln2 s

m2
t

− π2 + 2iπ ln
s

m2
t

]
. (3.54)

Therefore, ΓZ∗γγ(s) behaves asymptotically as 1/s2 while all other neutral vertices
behave like 1/s. This fast drop with s is also verified by comparing the solid lines
between Figs. 3.3a, b, c, d and Fig. 3.3e.

V ∗W−W+

Just for completeness, we study the chiral CP-invariant part of the (γ, Z)∗WW vertex.
For on-shell W ’s and in momentum space this corresponds to operators of the form,

fV
5 ǫ

µνρσ (k1 − k2)σ . (3.55)

There are of course CP-invariant, non-chiral operators generated from our fermion
triangle graph that have the form [118,119],

fV
1 (k1 − k2)

µgνρ − fV
2

m2
W

(k1 − k2)
µqνqρ + fV

3 (qνgµρ − qρgµν) . (3.56)

In the SM, note that both f1 and f3, exist at tree level. We are interested here only
on chiral, one-loop (triangle) induced operators in eq. (3.55).

The numerical calculation of the (γ∗, Z∗)W−W+ effective vertices are somehow
more complicated than the neutral ones. There are two masses and two different neu-
tral vertices involved, making the triangle diagram looking differently than its crossed
counterpart (see Fig. 3.4). We follow the same steps as we did for the neutral vertices
and present our results (and technical details) in Appendix I. The chiral CP-invariant
part of the effective vertex, Γµνρ, is the same as in eq. (3.2). The finite form factors
A3..6 need to be slightly modified by the mass difference of the two fermions involved;
analogously for A1, 2. Our main conclusion for a general vertex that contains external
charged gauge bosons is given by eqs. (I.2) and (I.3).

The relevant couplings αW
ff ′ , and βW

ff ′ can be read from the charged current part of
the SM Lagrangian,

L ⊃ gZ(W
+
µ Jµ+

W +W−
µ Jµ−

W ) , (3.57)
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with the J±
W -currents being

Jµ+
W = (Jµ−

W )† =
1

2
√
2
[νγµ(1− γ5)e+ uγµ(1− γ5)d] . (3.58)

Hence αW
ff ′ = −βW

ff ′ =
gZ
2
√
2
for the pairs (ff ′) = (ν, e), (u, d), respectively. For simplic-

ity, we ignore quark and lepton mixing effects, but these can easily be included.

Figure 3.4: Standard Model fermion contributions to (Z, γ)WW one loop vertex.

We therefore set αj,k = −βj,k = gZ
2
√
2
in eqs. (I.2) and (I.3). The neutral gauge boson-

fermion couplings, αV
f , β

V
f , are taken from eq. (3.26). Assuming CP-conservation, the

1PI effective action Γµνρ
V ∗WW with V = γ, Z looks exactly the same as in eq. (3.27)

with the only difference being the form factors A1, 3 must be replaced by those given
in eq. (I.2) [and the paragraph below (I.2)]. Therefore we write7 ,

Γµνρ
V ∗W−W+(k1, k2) ≡ ǫµνρσ (k1 − k2)σ ΓV ∗W−W+(s) , (3.59)

where

ΓV ∗W−W+(s) =
∑

doublets

[
m2

W (A3 − A4) +
g2Zα

V
fd

16π2
I1 +

g2Zβ
V
fd

16π2
I2+

+
g2Z
32π2

(αV
fd
− βV

fd
) (w − 1) + (fu ↔ fd)

]
.

(3.60)

In this formula we abbreviate A3, 4 ≡ A3, 4(m
2
fu
,m2

fd
) and I1, 2 ≡ I1, 2(m

2
fu
,m2

fd
), with

I1 =

∫ 1

0

dx

∫ 1−x

0

dy
−(x+ y)∆m2 +m2

fu

x(x− 1)m2
W + y(y − 1)m2

W − xy(s− 2m2
W )− (x+ y)∆m2 +m2

fu

,

(3.61a)

I2 =

∫ 1

0

dx

∫ 1−x

0

dy
2xm2

fd
+ (x+ y)∆m2 −m2

fu

x(x− 1)m2
W + y(y − 1)m2

W − xy(s− 2m2
W )− (x+ y)∆m2 +m2

fu

,

(3.61b)

7Our notation for ΓV ∗W−W+(s) is related to the standard form factor of ref. [118], as
ΓV ∗W−W+(s) = −gVWW fV

5 (s).
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where ∆m2 ≡ m2
fu

−m2
fd
. In the limit of heavy masses, m2 = m2

fu
= m2

fd
≫ s, m2

W ,
we obtain:

lim
m2→∞

I1 =
1

2
, lim

m2→∞
I2 = −1

6
. (3.62)

Let us examine the γ∗W−W+ case first. We must set βγ
fu,d

= 0. In this case gauge

invariance [see eq. (I.4)] implies w = z and CP-invariance w = −z, and therefore
w = z = 0. Having fixed the anomaly term, the result for this vertex turns out to be
simply,

Γγ∗W−W+(s) =
1

2
s

∑

doublets

[
A3(m

2
fu ,m

2
fd
) + (fu ↔ fd)

]
, (3.63)

where A3 is a form factor defined in Appendix I. Here Γγ∗W−W+(s = 0) = 0 as it
should be [118, 119], i.e., there is no pole at q2 = 0. This is a special case where
the anomaly term conspires with I1-term such that the final result contains no non-
decoupling terms. In order for gauge invariance to be non-anomalous, the last terms
in the WIs system (I.4), must vanish. This implies a relation among fermion charges,

∑

f=e,ν,d,u

αγ
f = Qe +Qν + 3Qd + 3Qu = 0 , (3.64)

which is exactly the charge conservation condition. Then, in the asymptotic limit,
s ≫ m2

W , m
2
fu,d

, the amplitude for Γγ∗W−W+(s → ∞) vanishes, thanks to eq. (3.64).
This is obvious from the numerical outcome in Fig. 3.5. It also shows an enhanced
threshold behaviour around

√
s ≈ 2mt (solid line).

Figure 3.5: The effective vertex |Γγ∗WW (s)| in the minimal SM (solid line) and in SM
with an extra fourth (SM4) generation (dashed line).
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Quantitatively, this can be seen from eq. (3.63) by expanding A3 around the thresh-
old. Compared to Γγ∗ZZ(s), there is an additional contribution due to the large mass
difference ∆m2 = m2

t −m2
b ≈ m2

t , in the numerical factor that multiplies s/m2
t . Our

evaluation of integrals contains one numerical integration and follows the procedure of
Appendix B in ref. [89]. Our analytic formulae in Appendix J, at the limit of mW = 0,
are in full agreement with these results. Few representative values are,

Γγ∗WW (
√
s = 200 GeV) = (6.8− 6.4 i)× 10−4 ,

Γγ∗WW (
√
s = 500 GeV) = (−1.5 + 15 i)× 10−4 .

Comparing with γ∗ZZ vertex we see here that the mass splitting generates a sizeable
absorptive part that dominates the vertex after

√
s & 2mW .

Figure 3.6: The effective vertex |ΓZ∗WW (s)| in the minimal SM (solid line) and in SM
with an extra fourth (SM4) generation (dashed line).

We now turn to the Z∗W−W+ vertex. This time we have only CP-symmetry at our
disposal which sets only the constraint w = −z. At the broken limit there is no other
symmetry remaining in order to fix the parameter w alone. However, in the exact SU(2)
limit where [g′, sw → 0, αf = −βf ] this vertex should be exactly the same as the Z∗ZZ.
Therefore, the arbitrary parameters are fixed by Bose symmetry to be w = −z = 1/3.
For this choice of w and at the heavy mass limit, m2 = m2

fu
= m2

fd
≫ s, m2

W , the
vertex is proportional to αf + βf ∝ s2w for every fermion contribution, a combination
which is proportional to SU(2) breaking effects. Another, equally good, choice would
be w = 0, for example. The physical requirement here is the decoupling of a particle
from the ΓZ∗WW vertex.

In conclusion, the Z∗WW vertex is undetermined : there is only CP-symmetry, that
is not enough to fix two arbitrary parameters. However, for the anomaly-free SM this
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arbitrariness is irrelevant since it is cancelled when the whole fermion contribution is
taken into account. We shall meet this situation again in the Z ′V V -vertex below.

Our numerical evaluation of the SM |ΓZ∗WW (s)| is shown in Fig. 3.6. This time, the
top quark threshold destructively adds to the vertex. As in previous cases, we present
few representative values,

ΓZ∗WW (
√
s = 200 GeV) = −(8.5 + 7.6 i)× 10−4 ,

ΓZ∗WW (
√
s = 500 GeV) = −(3.8 + 3.5 i)× 10−4 ,

that show similar order of magnitude values for the real part as in the Z∗ZZ vertex but
an enhanced absorptive part. The latter is due to custodial symmetry breaking effects
i.e., the large mass difference between the top and the bottom quarks. Although
there is an intense experimental ongoing analysis at LEP [139], Tevatron [140] and
LHC [141,142] for the first three CP-invariant non-chiral operators, fV

i=1..3 of eq. (3.56),
we are not aware of a similar experimental search on the chiral fV

5 of eq. (3.55).

3.4.2 Models with a sequential fourth fermion generation

In our first departure from the SM we assume a fourth generation matter of quarks and
leptons. Apart from the fact that the 4th generation neutrino has to weight more than
45 GeV, a certain tuning to avoid EW constraints is needed. More specifically, one
extra doublet of degenerate leptons contributes a piece of approximately 1/6π ≈ 0.05
into the S-parameter [143] while the current fit [144] to the EW data gives,

S = 0.04± 0.10 . (3.65)

Therefore, a 4th, mass degenerate, fermion generation will contribute a 4/6π ≈ 0.2
piece to S-parameter which is incompatible with the fit. A certain mass difference
or else a certain weak isospin violation is needed which is parameterized by the T
parameter [143]. A consistent parameter space with EW precision data and published
direct searches is

mν4 = 400 GeV , me4 = 660 GeV ,

mt4 = 358 GeV , mb4 = 372 GeV . (3.66)

This mass spectrum corresponds to Tevatron experiments allowed region where the
analyses from CDF [145] have excluded t4 and b4 quarks to have masses smaller than
the values quoted above8. The leptons mass spectrum is chosen such that it does

8Currently, the sequential 4th generation is under siege from LHC [146]. If there exist new heavy
SM type quarks, they will contribute a factor of up to N2

c = 9 into the Higgs production cross
section for the (triangle) process gg → H. The current cross section sensitivity at LHC is within
a few of the SM prediction and therefore it sets an indirect bound over the whole exclusion Higgs
area, up to 550-600 GeV. Other direct bounds from LHC on 4th generation top and bottom quarks
involve assumptions about their mass difference to be smaller than the W-boson mass. These caveats
are discussed in some detail with complete references in ref. [147]. However, even more stringent
constraints have been obtained from direct searches at the LHC. Searching for short-lived b-quarks,
CMS ruled out mb4 < 611 GeV at 95% CL (ref. [148]). Also, the inclusive search in ref. [149] set
a strong limit on a degenerate fourth generation, mt4 > 495 GeV at 95% CL, assuming a minimal
off-diagonal mixing between the third and the fourth generation.
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not contribute significantly to the oblique parameters, e.g., for these values of lepton
masses one has ∆Sl ≃ 0 [144].

Due to the fact that the charges are the same as in the SM, the anomalies are
canceled in each generation. It is important to notice here that if all the extra fermions
were very heavy and had the same mass, no effect would be left back and the decoupling
would work perfectly. The reason is, first of all, that the sum over all extra fermions of
expressions that contain the finite integrals A3,A4 or A5 vanishes because the integrand
factors out a term

∑
i ci, where ci is the pre-anomaly factor of each fermion. But,

this sum is equal to zero for an anomaly free generation. On the other hand, terms
proportional to I1 or I2 in eq. (3.4), in the limit of large fermion mass, are canceled
exactly with the anomaly term for special values of w and z parameters that are fixed
by the Bose symmetry in each case. But this constraint is not necessary, e.g., if an
anomaly free generation of very heavy mass degenerate chiral fermions is added to the
SM, it has no effects at low energies, no matter what the values of w and z are. This
is guaranteed by the fact that the extra generation is anomaly free.

The numerical analysis for the three gauge bosons vertices is the same as previously.
Using the approximate integral expressions from Appendix J, we draw plots for the
amplitudes |ΓV ∗V V (s)| and |ΓV ∗WW (s)| versus √s in different combinations of the ex-
ternal gauge bosons V = γ, Z. These plots are collected in Fig. 3.3, and Figs. 3.5, 3.6,
respectively [dashed line].

The extra generation has a significant contribution in the region near twice the
threshold of each extra fermion where the amplitude rises until those values (shown as
peaks in every combination of external gauge bosons) and drops fast as 1/s (apart from
V ∗γγ which drops as 1/s2). We see that for small values of energy the two curves (the
curve that corresponds to the SM case and the curve that corresponds both to the SM
and the 4th generation) have the same form. In this energetic region (

√
s . 600GeV)

the dominant feature is the first peak that corresponds to the threshold energy for the
creation of the top quark (

√
s ≈ 350GeV ≈ 2mt). In addition, the contribution from

the extra fermionic generation is negligible, because all the extra fermions are heavy
compared to the energy, (2mf >

√
s), where f runs over the extra fermions. These

extra fermions have more or less similar masses. As before with the top-quark mass,
there is a cancellation between the anomaly contributions and the I1, 2 parts of the
amplitude for each fermion separately. As a result, the total contribution from the
fourth generation is negligible as we can see from Fig. 3.3. The situation is different
when

√
s runs over the mass spectrum of the extra fermionic generation. Firstly for

(
√
s & 600GeV) we see different peaks that correspond to the threshold energy for

the creation of the extra fermions (
√
s ≈ 2mi). When (2mi <

√
s < 2mj), there is a

non-zero contribution to the total amplitude. In this case, fermions whose masses are
very heavy compared to

√
s, exhibit the same behaviour as previously i.e., the anomaly

term cancels out against the finite contribution.
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3.4.3 Minimal Z ′ models

Grand Unified Theories (GUTs) with rank larger than four, could break to the SM
gauge group times additional U(1)′s : SU(3)×SU(2)×U(1)×U(1)′n. This symmetry is
broken down to U(1)em and therefore there is a possibility of additional forces mediated
by the Z ′ gauge bosons associated with the broken U(1)′ symmetries (for a review see
ref. [150]).

We shall concentrate here on minimal models with one additional neutral gauge
boson, the Z ′. Minimal here means models that contain no-additional i.e., no exotic,
matter particles apart from the SM ones and right handed neutrinos. The latter play
a crucial role in cancelling anomalies due to the additional U(1)′ and in producing
viably small neutrino masses. These models were devised first in ref. [151] and later
elaborated in refs. [152,153]. Following the notation of ref. [152] we can describe these
models with three additional parameters: the mass of the new gauge boson, MZ′ , and
the couplings gY and gBL. The latter enter into the current which couples to the
unmixed Z ′

0 gauge boson as:

Ek − λp(n)J
µ
Z′

0

=
∑

f=fL,fR

[gY Yf + gBL (B − L)f ] fγ
µf . (3.67)

From this, it is easy to construct Lint in eq. (3.24) with

αZ
f = cos θ′ αZ0

f − sin θ′ α
Z′

0

f , (3.68a)

αZ′

f = sin θ′ αZ0

f + cos θ′ α
Z′

0

f , (3.68b)

βZ
f = cos θ′ βZ0

f − sin θ′ β
Z′

0

f , (3.68c)

βZ′

f = sin θ′ βZ0

f + cos θ′ β
Z′

0

f , (3.68d)

where θ′ is the mixing angle between Z and Z ′ gauge bosons given by,

tan θ′ = −gY
gZ

M2
Z0

M2
Z′ −M2

Z0

, (3.69)

with M2
Z0

= g2Zv
2/4 the ‘SM’ Z-boson mass. Also in eq. (3.68) we obtain for α

Z′

0

f , β
Z′

0

f ,

αZ′

0
u =

1

2

(
5

6
gY +

2

3
gBL

)
, βZ′

0
u =

gY
4
,

α
Z′

0

d =
1

2

(
−1

6
gY +

2

3
gBL

)
, β

Z′

0

d = −gY
4
,

αZ′

0
e =

1

2

(
−3

2
gY − 2gBL

)
, βZ′

0
e = −gY

4
,

αZ′

0
ν =

1

2

(
−1

2
gY − 2gBL

)
, βZ′

0
ν =

gY
4
, (3.70)

while the corresponding expressions for αZ0

f , β
Z0

f are given by eq. (3.26). This param-
eterisation through gY and gBL helps us to very easily incorporate several models
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that have been studied in the literature: ZB−L when the U(1)B−L charges of the
SM fermions are proportional to (B − L) quantum numbers, Zχ a GUT inspired
SO(10) → SU(5) × U(1)χ model and finally, Z3R where the corresponding U(1)3R
charges are proportional to T3R generator of the global SU(2)R symmetry. We sum-
marise the couplings of these models in the following table:

ZB−L Zχ Z3R

gY 0 − 2√
10
gZ′ −gZ′

gBL

√
3
8
gZ′

5
2
√
10
gZ′

1
2
gZ′

Here, we wish to calculate the effective vertices ΓZ
′
∗γZ and ΓZ

′
∗ZZ for those models.

Recalling eqs. (3.38) and (3.27) with i = Z ′, j = γ or Z and k = Z respectively, we
obtain:

Γµνρ

Z
′
∗γZ

(s) ≈ ǫµνρσk1σ
∑

f=u,d,e,ν

[m2
Z(A3f + A5f )−

m2
fβ

Z
f

π2
I2f +

+
(z + 1)

4π2
(αZ′

f β
Z
f + αZ

f β
Z′

f )αγ
f ]

≡ ǫµνρσk1σ ΓZ
′
∗γZ(s) , (3.71)

Γµνρ

Z′
∗ZZ

(s) = ǫµνρσ(k1 − k2)σ
∑

f=u,d,e,ν

[
m2

Z(A3f − A4f ) +
m2

fβ
Z
f

π2
I1f −

−(w − 1)

4π2
[(αZ

f )
2βZ′

f + (βZ
f )

2βZ′

f + 2αZ′

f α
Z
f β

Z
f ]
]
≡

≡ ǫµνρσ(k1 − k2)σ ΓZ
′
∗ZZ(s) , (3.72)

with αf , and βf given in eqs. (3.68) and (3.70). Again the last terms on the r.h.s
of eqs. (3.71) and (3.72) arrive from the chiral anomaly of individual fermion contri-
butions. These anomaly terms cancel out when we sum over all SM fermions (here
we also need the right handed neutrino). This also removes the arbitrariness due to
the unknown parameters w, z. Contrary to the SM vertices, we cannot use here any
physical argument in order to remove completely both w and z parameters. We only
have U(1)em gauge invariance for Z

′∗γZ and Bose symmetry for Z
′∗ZZ while in the

SM we have two neutral gauge bosons and two symmetries.

But let us for the moment keep the anomalous terms. Obviously they are multiplied
by the arbitrary parameters (z + 1) (for Z

′∗γZ) and (w − 1) (for Z
′∗ZZ). Focusing

on the Z ′
B−L model, where the mixing angle θ′ vanishes, we observe that for any single

heavy fermion contribution the 2nd and the 3rd term on the r.h.s of eqs. (3.71) and
(3.72) mutually cancel and what remains back is the effective theory with the low mass
fermion contributions but together with their anomalous terms included. The latter do
not depend on particle masses. The choices for the arbitrary parameters are w = z = 1
for Z ′γZ and w = z = 0 for Z ′ZZ.
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Figure 3.7: a, b) | ΓZ′V V (s) | versus
√
s for different gauge bosons combinations as they

are given by eqs. (3.71) and (3.72). The solid curve corresponds to the SM spectrum
with an extra U(1)B−L, while the dashed curve corresponds to the same but with a
4th sequential fermion generation added as in Fig. 3.3. We take MZ′ = 1 TeV and
gZ′ = αem. c, d) The same as (a, b) but with U(1)χ. e, f) The same as (a, b) but with
U(1)3R.

The last condition can be interpreted as follows: for the amplitude ZZ → ZZ to
hold for asymptotic values of energies, eq. (3.10) requires w = z but Bose symmetry
requires w = −z. This conclusion does not stand firm in the case of mixing between Z
and Z ′ i.e., in models Zχ, Z3R of the table above, and the contribution of a heavy mass
particle is undetermined. Of course anomalies do cancel when all model fermions are
added. In Fig. 3.7 we display numerical results for the absolute value of the scalar part
of the 1PI effective vertices Z

′∗γZ and Z
′∗ZZ in eqs. (3.71) and (3.72) forMZ′ = 1 TeV
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and gZ′ = αem. Figs. (3.7a, b) refer to ZB−L model, Figs. (3.7c, d) to Zχ models
and, finally, Figs. (3.7e, f) to Z3R models. For the values of MZ′ and gZ′ chosen, fits
to electroweak observables and direct searches are satisfied. We also present results
when adding a sequential 4th generation of fermions with the same masses (and the
reasoning) as we did for the SM case of section 3.4.1. We observe that there is an
enhancement of the vertices by a factor of 2 for ZB−L, and a factor of 10-15 for Zχ.
Numerically, we can define analogous quantities hZ

′

3 and fZ′

5 by simply replacing Z with
Z ′ in the correspondind definitions. As an example, for the B − L model we obtain,

hZ
′

3 (
√
s = 200 GeV) = −2.7× 10−5 ,

hZ
′

3 (
√
s = 500 GeV) = (−2.7 + 5.3i)× 10−4 ,

fZ′

5 (
√
s = 200 GeV) = −7.2× 10−6 ,

fZ′

5 (
√
s = 500 GeV) = (−7.7 + 18i)× 10−5 . (3.73)

Numerical results for the vertices presented above and in Fig. 3.7 are based on various
analytical approximations for form factors described in Appendix J.

Now that Z ′ can be heavy, it is interesting to study its decay width into Zγ and
ZZ modes. Based on eq. (3.1) and on eqs. (3.71) and (3.72) the decay widths of the
Z ′ can be read from

Γ(Z ′ → γZ) =
1

48π

∣∣∣
∑

f=u,d,e,ν

[m2
Z(A3f + A5f )−

m2
fβ

Z
f

π2
I2f +

+
(z + 1)

4π2
(αZ′

f β
Z
f + αZ

f β
Z′

f )αγ
f ]
∣∣∣
2

×

× m3
Z′

m2
Z

(1− m2
Z

m2
Z′

)3 (1 +
m2

Z

m2
Z′

) , (3.74)

Γ(Z ′ → ZZ) =
1

96π

∣∣∣
∑

f=u,d,e,ν

[
m2

Z(A3f − A4f ) +
m2

fβ
Z
f

π2
I1f −

− (w − 1)

4π2
[(αZ

f )
2βZ′

f + (βZ
f )

2βZ′

f + 2αZ′

f α
Z
f β

Z
f ]
]∣∣∣

2

×

× m3
Z′

m2
Z

(1− 4m2
Z

m2
Z′

)5/2 , (3.75)

Γ(Z ′ → W+W−) =
αemmZ′ sin2 θ′

48 tan2 θw

(
1− 4

m2
W

m2
Z′

)3/2 [
1 + 20

m2
W

m2
Z′

+ 12
m4

W

m4
Z′

](
m2

W

m2
Z′

)−2

,

(3.76)

Γ(Z ′ → ff) =
NcmZ′

12 π

[
(αZ′ 2

f + βZ′ 2
f )−

3m2
f

m2
Z′

(αZ′ 2
f − βZ′ 2

f )

] √
1−

4m2
f

m2
Z′

, (3.77)

where Nc is the color factor (3 for quarks and 1 for leptons) and the tree level decay
width for Z ′ → WW has been taken from ref. [154] and is dominant over the loop-
induced ones. For gZ′ = αem, MZ′ = 1 TeV and SM spectrum with three generations
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we obtain for the B − L, (χ), [3R] models:

Br(Z ′ → νν) = 37.7 (42.3) [12.5] % ,

Br(Z ′ → ℓℓ) = 37.7 (12.5) [12.6] % ,

Br(Z ′ → qq) = 24.5 (45.1) [74.8] % ,

Br(Z ′ → WW ) = 0.03 (3.2) [8.1]× 10−5 , (3.78)

Br(Z ′ → Zγ) = 5.8 (∼ 10−3) [8.7]× 10−6 ,

Br(Z ′ → ZZ) = 3.0 (2.5) [0.9]× 10−7 .

These results are pretty much the same for bigger MZ′ values. As we can see, the
branching fraction for Z ′ → γZ is in the region of 10−5 − 10−6, while for Z ′ → ZZ in
the region ∼ 10−7. These are very challenging numbers even for LHC@14 TeV.

In coordinate space representation, the vertices in eqs.(3.71) and (3.72) arise on-
shell from the following operators:

OZ′γZ ∼ εµνρσZ ′
µZν Fρσ , (3.79)

OZ′ZZ ∼ εµνρσZ ′
µZν ∂ρZσ , (3.80)

which are both P-odd but CP-invariant. Although not present in the SM and in the
Z ′-model under consideration, there may be P-even but CP-violating operators of the
form OZ′ZZ ∼ Z

′µ(∂νZµ)Zν induced by a triple scalar loop instead. The latter would
interfere with eq. (3.80) and there is a proposal in ref. [155] on how their effects can be
separated at the LHC. However, within minimal Z ′-models considered here, this looks
very difficult due to tiny Br(Z ′ → V V ) of eq. (3.78).

3.5 Conclusions

We construct an effective 1PI vertex for triple gauge bosons for every renormalized
theory making explicit mentioning to the chiral anomalies and their synergy with heavy
fermion decoupling phenomena. Our method for calculating the vertex is based on
ref. [120]. It is quite general and can be divided in four steps:

1. Write down the most general, Lorentz (and/or possibly other symmetry) invariant
effective vertex Γµνρ [like eq. (3.2)] with unknown form factors.

2. Isolate the -potentially- infinite form factors and calculate only the finite parts.

3. Derive Ward Identities arising from the underlying spontaneously broken gauge
symmetries at the quantum level. Apply them to Γµνρ and calculate the ambigu-
ous form factors, thus forcing them to be finite.

4. If the vertex is still undetermined i.e., if arbitrary parameters still remain, try
to fix them by physical requirements. If nevertheless arbitrariness persists, then
the model needs completion, perhaps with new particles or new dynamics.
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This method, explained in detail in Appendix H and in section 3.2, does not require
dimensional regularisation or other integral regularisation techniques. It may require,
however, “shifting momenta” techniques like eq. (H.11). The above steps can be en-
riched with additional relations. Instead of WIs, one could use other identities like for
example those arising from perturbative unitarity sum rules or the Goldstone Boson
Equivalence Theorem e.g., eq. (3.11).

All the above steps are realized when calculating triple gauge boson vertices in
spontaneously broken gauge theories, like for example the SM or its extensions like
minimal Z ′-models. The anomaly terms are arbitrary and can only be fixed by physics.
Only then can we discuss non-decoupling effects in the broken limit. We observe that
for V ∗V V, V = γ, Z and for γ∗WW vertices, there are two arbitrary parameters that
are completely determined by two physical symmetries: U(1)em and Bose symmetry or
CP-invariance. We find that at the limit of heavy fermion masses, non-decoupled terms
cancel exactly those that arise from anomalies. For example, in the SM, decoupling of
the top quark will leave behind anomalous-terms of light quarks and leptons plus finite
parts. On the other hand vertices like Z∗WW, Z

′∗V V are in general undetermined
because there are no enough symmetries to fix the arbitrary parameters. Of course,
for anomaly free models, this arbitrariness is removed when adding up all fermion
contributions.

We performed a numerical analysis for SM and minimal Z ′ model vertices. To this
end we made an effort to calculate finite integrals in terms of standard functions that
are easy to handle. For example in Appendix J, we solved analytically the integrals
for V ∗γV -vertices. We then proceeded to SM predictions for the triple gauge boson
vertices. Unfortunately, it turns out that within the SM these are rather small to
be discovered even at the LHC with

√
s = 14 TeV. Similar results are obtained in

the SM extended by a sequential fourth fermion generation. The difference w.r.t the
SM, is that |ΓV ∗V V (s)| is “delayed” to vanish for large

√
s due to the heavy, 4th

generation thresholds (see Figs. 3.3). In the best case, the SM + 4th generation
predicts a maximum of a few×10−3 for |Γγ∗γZ | [see dashed lines in Figs. 3.3].

We have performed a numerical analysis, shown in Fig. 3.7, for minimal Z ′-models
with U(1)B−L symmetry, SO(10)-like and U(1)3R also extended with a 4th fermion
generation. For a conservative choice of MZ′ = 1 TeV and gZ = αem, we find |ΓZ′ZZ |
and |ΓZ′γZ | in the regime below a few×10−5. We also briefly discussed Z ′-decays to
Zγ and ZZ. Adopting the parameter space above, their branching ratio come out to
be in the neighborhood of ∼ 10−5 and ∼ 10−7, respectively.

In section 3.3.2 and Appendix K, we calculated non-decoupling effects that arise
instantaneously with vanishing anomalies. We constructed several toy models with two
or three external gauge bosons and a number of fermions where this situation could
take place. In principle, these models can be used as a basis towards realistic extensions
of the SM.

Our main result, the effective triple gauge boson vertex obtained in section 3.2 can
be used in various ways: i) in models with anomalous spectrum, ii) in realistic anomaly
driven models of section 3.3.2, iii) in MSSM and its extensions, iv) in dark matter or
neutrino - nucleon scattering processes with a photon in the final state.



Chapter 4

Anatomy of the H → γ γ in the
unitary gauge

In this Chapter, we review and clarify computational issues about the W -gauge boson
one-loop contribution to the H → γγ decay amplitude, in the unitary gauge and in the
Standard Model. As in the previous Chapter, we introduce arbitrary four-vectors in
order to shift the integral momentum variable. We find that highly divergent integrals
depend upon the choice of these arbitrary vectors. One particular combination of these
arbitrary vectors reduces the superficial divergency down to a logarithmic one. The
remaining ambiguity is then fixed by exploiting gauge invariance and the Goldstone
Boson Equivalence Theorem (GBET). Again, as we operated in the previous Chapter,
the method is strictly realised in four-dimensions. The result for the amplitude agrees
with the “famous” one obtained using dimensional regularization (DR) in the limit
d → 4, where d is the number of spatial dimensions in Euclidean space. At the
exact equality d = 4, a three-sphere surface term appears that renders the Ward
Identities and the equivalence theorem inconsistent. We also examined an alternative
four-dimensional regularization scheme and found agreement with the DR outcome.

After presenting the problem about the ambiguities that appear in the calculation
of H → γ γ amplitude in the unitary gauge and introducing the basic steps of our
method, we present the calculation of theW -loop contribution1 to H → γγ amplitude,
its ambiguities and the resolution within physics arising from GBET. We also examine
details of the amplitude calculation within an alternative regularization method (four
dimensional regularization scheme FDR) ref. [172], the one that resembles most closely
the symmetry approach taken here. This Chapter is based on ref. [173].

1Note that the calculation of the fermion triangle contribution is well defined i.e., it is independent
of arbitrary vectors and finite.

87
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Figure 4.1: W -gauge boson contribution to the H → γγ amplitude. Momentum flow
together with relevant shift vectors are indicated.

4.1 Introduction

Today one of the main focal points at the Large Hadron Collider (LHC) is to search
for the Higgs boson (H) (refs. [6–8]) through its decay into two photons, H → γγ
(for reviews see refs. [159,160]). Indeed, the recent (refs. [4,5]) observation by ATLAS
and CMS experiments of a resonance, that could be the Standard Model (SM) Higgs
boson, is based on data mainly driven by H → γγ. In the (SM) [1–3], this particular
decay process goes through loop induced diagrams involving either charged fermions or
W -gauge bosons. Their calculation was first performed in ref. [161] in the limit of light
Higgs mass mH ≪ mW , using dimensional regularisation in the ’t Hooft-Feynman
gauge. Since then, there are numerous works spent on improving this calculation
including finite Higgs mass effects in linear and non-linear gauges (refs. [162–164]),
different regularisation schemes (refs. [165–168]) and/or different gauge choices (ref.
[169]).

The H → γγ amplitude is originated, in broken (unbroken) phase, by a dimension-5
(dimension-6) SM gauge invariant operator(s) and, therefore, its expression, within a
renormalizable theory, must be finite, gauge invariant and independent of any gauge
choice. The amplitude should also be consistent with the Goldstone Boson Equivalence
Theorem (GBET) (refs. [129–131]) since the SM is a renormalizable, spontaneously
broken, gauge field theory.

A problem arises when the W -gauge boson contribution (see Fig. 4.1) to H → γγ
produces “infinite” results at intermediate steps. These problems are usually treated
by using a gauge invariant regulator method, e.g., dimensional regularization. In the
unitary gauge (ref. [170]), this indeterminacy is more pronounced and more difficult
to handle with2 due to the particular form of the W -gauge boson propagator. On the
other hand it is much simpler to work with only few diagrams, that involve physical

2However, using DR and unitary gauge with modern computer algorithms this may not be a hard
problem today (see ref. [169]).
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particle masses, rather than many.

More specifically, in the unitary gauge, one encounters divergencies up to the sixth
power. It is well known that, in four-dimensions, shifting momenta in integrals that
are more than logarithmically divergent is a “tricky business” - recall the calculation of
linearly divergent fermion triangles in chiral anomalies [30, 91] - that requires keeping
track of several “surface” terms for these integrals. There is also the situation we
face here where apparent logarithmically divergent integrals turn out to be finite but
discontinuous at d = 4.

We would like to bypass those ambiguities and at the same time to present a
“regularisation” method, by performing the calculation for the H → γγ amplitude
strictly in 4-dimensions and in the physical unitary gauge. Our method is similar to
the one used in the previous Chapter for calculating triple gauge boson amplitudes (see
refs. [87, 120]), or Lorentz non-invariant amplitudes [109], and consists of three steps:

1. We write down the most general Lorentz invariant H → γγ amplitude.

2. We introduce arbitrary vectors that account for the “shifting momentum” inde-
terminacy. We show that a particular choice of those “shifting vectors” cancel
higher powers of infinities leaving still behind at most logarithmically divergent
integrals that are treated as undetermined variables.

3. We exploit physics, i.e., gauge invariance (Ward Identities) and the GBET in
order to fix the last undetermined variables.

This method is quite general and can be applied to other observables within a renor-
malizable theory. Following these steps we arrive at the same result for the H → γγ
amplitude obtained by J. Ellis et.al [161] and by M. Shifman et.al [163] almost 35 years
ago. Our analysis, among other issues, highlights that the recent observation [4, 5] of
the H → γγ at the LHC signifies the validity of the Goldstone Boson Equivalence
Theorem. As a further clarification we also make a remark on the direct calculation in
the following three cases: we first perform the integrals in exactly d = 4 (with no reg-
ularisation method beyond the one discussed in point 2 above), second, by exploiting
Dimensional Regularisation (DR) as defined in refs. [33,171] and then taking the limit
d→ 4, and finally third by using a four-dimensional regularization scheme introduced
in ref. [172].

Our calculation is complementary to, but somewhat different than, the two existing
ones, performed in the unitary gauge (refs. [169,174,175]) . It is not our intend to redo
the calculation in unitary gauge with DR as in ref. [169]. On the contrary, we want to
clarify subtle issues related to the amplitude in unitary gauge and d = 4 raised in part
by refs. [174,175]. We find, using arbitrary vectors, that divergencies (up to 6th power)
are reduced down to logarithmic ones. This is a new result that is not obvious when
working in unitary gauge and cannot be seen when using dimensional regularization.
This fact was stated incorrectly in refs. [174,175].
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4.2 The W -loop contribution to H → γγ in SM

In this section we present the calculation of the W -loop contribution3 to H → γγ
amplitude. The most general, Lorentz and CP-invariant, form of the of-shell amplitude
is:

M1 g
µν +M2 k

ν
1 k

µ
2 +M3 k

µ
1 k

ν
2 +M4 k

µ
1 k

ν
1 +M5 k

µ
2 k

ν
2 , (4.1)

where k1 and k2 are the outgoing photon momenta shown in Fig. 4.1, and the coefficients
Mi=1..5 ≡ Mi=1..5(k1, k2) are scalar functions of k

2
1, k

2
2, and k1 ·k2. By considering that

all particles are on-mass-shell, that is k21 = k22 = 0, k1 · k2 = m2
H/2, k1 · ǫ∗(k1) = 0 =

k2 ·ǫ∗(k2), we obtain an amplitude M = Mµνǫ∗µ(k1)ǫ
∗
ν(k2) with only two, undetermined

(for the time being), coefficients,

Mµν = M1 g
µν + M2 k

ν
1 k

µ
2 . (4.2)

In unitary gauge, the Feynman diagrams that contribute to M1 and M2 are displayed
in Fig. 4.1. In order to calculate them, we introduce three arbitrary four-vectors a, b
and c, one for each diagram. These vectors shift the integration momentum, i.e.,
p→ p+a for the first diagram, p→ p+ b for the second diagram and p→ p+ c for the
third diagram. As we shall see, these arbitrary vectors operate as regulators capable
to handle highly divergent integrals related to unitary gauge choice. Furthermore, the
vectors a, b and c, linearly depend upon the external momenta k1 and k2. Hence a, b
and c are not linearly independent [c.f. eq. (4.4)]. This is an important fact leading to
the cancellation of infinities.

We first calculate the less divergent part of Mµν in eq. (4.2) which is the M2 co-
efficient4. By naive power counting, we see that M2 diverges by at most four powers.
Then we perform the Feynman integral calculations strictly in 4-dimensions. For rea-
sons that will become clear later, we shall keep the number of dimensions general in
all intermediate steps of the calculation i.e., gµνgµν = d. As we will see, d contributes
only in finite pieces of M2 [c.f. eq. (4.9)]5.

With all the above definitions, we can write down the total amplitude in the form

Mµν ∼
∫

d4p

(2π)4
[
A11 g

µν

+ A21 (p+ a)µ (p+ a)ν +A22 (p+ b)µ (p+ b)ν +A23 (p+ c)µ (p+ c)ν

+ A31 (p+ a)µ kν1 +A32 (p+ b)µ kν1 +A33 (p+ c)µ kν1
+ A41 (p+ a)ν kµ2 +A42 (p+ b)ν kµ2 +A43 (p+ c)ν kµ2
+ A51 k

µ
2 k

ν
1

]
, (4.3)

where the coefficients Aij = Aij(p
n; k1, k2; a; b; c) with −6 ≤ n ≤ 0, are given in

Appendix L, and the ∼ sign is the proportionality factor: −2ie2

v
. Note that Mµν is a

3Note that the calculation of the fermion triangle contribution is well defined i.e., it is independent
of arbitrary vectors and finite. We are not going to repeat this calculation here and refer the reader
to the reviews in refs. [159,160].

4The coefficient M1 will be fixed later on by the requirement of gauge invariance.
5On the contrary, we shall see that there are non-trivial d-contributions into M1-coefficient.
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(superficially) 6th power divergent amplitude in the unitary gauge. We can see that
A11 in eq. (4.3) solely contributes to M1, while all other A-elements contribute to both
M1 and/or M2 in eq. (4.2).

First we focus on the calculation of the “less divergent” coefficient M2 of eq. (4.2).
Based on naive power counting, we observe that the A21, A22, A23-terms in eq. (4.3),
lead to at the most quartic divergent integrals. However, when adding all these pieces
together, we find that quartic divergent integrals vanish for every arbitrary vectors
a, b and c leaving behind an expression with integrals of third power (in momenta)
plus integrals with smaller divergencies. Then, the cubically divergent integrals are
proportional to all possible Lorentz invariant combinations like: [(a+ b− 2c) · p] pµpν ,
[(a+ b− 2c)νpµ] p2 and [(a+ b− 2c)µpν ] p2. Therefore, choosing

a+ b− 2 c = 0 , (4.4)

we ensure that third order divergent integrals related to A21, A22, A23-terms, vanish
identically. In the same way, by naive power counting, A31 and A33-terms - these
terms in eq. (4.3) together with A32 contribute solely to M2 - lead again to at most
third order divergent integrals. However, in the sum of A31 and A33-terms in eq. (4.3),
third order divergent integrals vanish for arbitrary a, b and c, leading to an expression,
that when added to A32-term, consists of at most quadratically divergent integrals,
proportional to [(c− a) · p] pµkν1 and [(c− a)µkν1 ] p

2. We choose,

c− a = 0 , (4.5)

for the quadratically divergent integrals to vanish. Likewise, when we add A42 and A43-
terms - these terms, together with A41, solely contribute to M2 in eq. (4.2) - the third
order divergent integrals vanish for every choice of a, b, c leading to an expression, that
when added to A41, consists of at most quadratically divergent integrals proportional
to [(c− b) · p] pνkµ2 and [(c− b)νkµ2 ] p

2. Therefore, we choose

c− b = 0 , (4.6)

for infinities to vanish identically. From eqs. (4.4), (4.5) and (4.6) we arrive at the final
relation among the three introduced vectors:

a = b = c . (4.7)

Equation (4.7) suggests that the rest of the divergent integrals depend by, at most, one
arbitrary vector, say the a-vector. Note that A51 contributes only to the finite part
of M2. Now, if we impose conditions of eq. (4.7) onto the remaining expressions for
A21, A22, ...,A51-terms of eq. (4.3), we find that all quadratically and linearly divergent
integrals vanish, independently of the direction of the a-vector. We stress here the fact
that the cancellation of divergencies down to logarithmic ones is a highly non-trivial,
almost “miraculous”, result. These cancellations only take place for a particular choice
of the momentum-variable shift vectors, [eq. (4.7)]6. Of course this is an expected
outcome for an observable within a renormalizable theory.

6As a corollary, if for instance, we had split the WWγ-vertex into three pieces, each one associated
with three different arbitrary vectors, then the generalised condition (4.7) would again downgrade the
divergency of the amplitude to a logarithmic one.
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The final result contains at most logarithmically divergent integrals. Despite of the
fact that the resulting expressions so far contain the shift p + a instead of p with an
arbitrary vector a, its presence is irrelevant since logarithmically divergent integrals
are momentum-variable shift independent [126]. This result is different with the one
obtained in refs. [174, 175], where there is a quadratically divergent term remaining
and is tuned to zero by appropriate choice of loop momentum.7 Summing up all the
above contributions to M2, we find a particularly nice and symmetric form for Mµν ,

Mµν ∼
∫

d4p

(2π)4
pµpν

{
4(d− 1)m2

W + 2m2
H

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
4(d− 1) m2

W + 2m2
H

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}

+

∫
d4p

(2π)4
pµkν1

{ −4(d− 1)m2
W − 4 (p · k2)

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
−4 (p · k2)

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}

+

∫
d4p

(2π)4
pνkµ2

{ −4 (p · k1)
[p2 −m2

W ][(p− k1)2 −m2
W ][(p− k1 − k2)2 −m2

W ]

+
−4(d− 1)m2

W − 4 (p · k1)
[p2 −m2

W ][(p− k2)2 −m2
W ][(p− k1 − k2)2 −m2

W ]

}

+

∫
d4p

(2π)4
kν1k

µ
2

{
6m2

W + 2 p2

[p2 −m2
W ][(p− k1)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

+
6m2

W + 2 p2

[p2 −m2
W ][(p− k2)2 −m2

W ][(p− k1 − k2)2 −m2
W ]

}
. (4.8)

Introducing Feynman parameters, shifting momentum variable from p to ℓ and ignoring
all terms that contribute to M1

8 we find that the contribution to M2 in eq. (4.2) arises

7Following eq.(11) in Gastmans et.al paper [174], or eq.(3.36) in their sequel paper [175], and unless
there is a typo in both their formulae, we find that there is a missing quadratically divergent term
proportional to k2kµkν . Moreover, their formulae contain a linearly divergent term that is referred to
by the authors claiming that this term reduces to a logarithmically divergent integral by changing the
momentum k → −k and further manipulating the integral. Note that in our calculation all divergent
integrals are reduced to at most logarithmically divergent ones without any further manipulation nor
any assumption other than eq. (4.7) for every arbitrary vectors a, b and c. Finally the authors in
refs. [174, 175] have made a specific choice for routing the internal loop momentum corresponding to
a = b = c = 1

2
(k1 + k2) and therefore their result should be the same with ours.

8These terms will be used later in arriving at eq. (4.24).
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solely from the term,

M2 k
ν
1 k

µ
2 ∼ 8

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4ℓ

(2π)4
ℓ2 kν1 k

µ
2 − 2 (ℓ · k2) ℓµ kν1 − 2 (ℓ · k1) ℓν kµ2

(ℓ2 −∆)3

+ 8m2
W

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4ℓ

(2π)4
3− 2 (d− 1) x (1− x− y)

(ℓ2 −∆)3
kν1 k

µ
2 , (4.9)

with ∆ = x(x+y−1)m2
H+m

2
W . Obviously, the first integral in eq. (4.9) is (superficially)

logarithmically divergent while the second one is finite. The number of dimensions (d)
appears only at the finite integral and therefore we can fearlessly set d = 4 everywhere.
This means that we do not use dimensional regularisation in what follows (see however
the discussion below). We state here few additional remarks to be exploited later on:
a) we observe that the top line in the integrand of eq. (4.9) does not vanish in the limit
m2

W → 0 and, b) despite of appearances in eq. (4.8), there is no m2
H in the numerators

of the subsequent expression eq. (4.9). The whole m2
H contribution arises from the

denominator’s ∆-term.

Our next step is to parametrize the logarithmically divergent integral in eq. (4.9) by
an unknown, dimensionless, parameter λ to be determined later by a physical argument.
So we define,

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4ℓ

(2π)4
ℓ2 kν1 k

µ
2 − 2 (ℓ · k2) ℓµ kν1 − 2 (ℓ · k1) ℓν kµ2

(ℓ2 −∆)3
≡ iλ

4(4π)2
kν1 k

µ
2 .

(4.10)

An important parenthesis here. We could of course promote d4ℓ → ddℓ and use di-
mensional regularisation [33] by exploiting symmetric integration ℓµℓν → 1

d
ℓ2gµν in

d-dimensions. In this case, and after taking the limit d→ 4, one finds λ = −1 which is
finite and non-zero, and, agrees with the one we find below in eq. (4.20) after impos-
ing the GBET condition. This is also the result found in the original refs. [161–163].
However, according to refs. [174, 175], the integral in eq. (4.10) is discontinuous at
d = 4; in fact, when symmetric integration, ℓµℓν → 1

4
ℓ2gµν in d = 4 is used, one finds

instead λ = 0. This is also understood in a slightly different context. It has long been
known [126–128] that shifts of integration variables in linearly (and above) divergent
integrals are accompanied by “surface” terms that appear only in four dimensions – a
famous example being the integrals in chiral anomaly triangle graphs. For our purpose
here let us start with the following shift of variables in a linearly divergent integral
that has been generalised [128] to work in 2ω-dimensions following the expression,

∫
d2ωℓ

ℓµ
[(ℓ− k)2 −∆]2

−
∫
d2ωℓ

(ℓ+ k)µ
(ℓ2 −∆)2

= − iπ
2

2
kµ δω,2 , (4.11)

that is valid for ω < 5/2 and ∆ constant, possibly dependent on Feynman parameters,
like the one given below eq. (4.9), and kµ is an arbitrary constant four vector. By taking
the derivative, ∂

∂kν
, of both sides in eq. (4.11) and shifting the integration variable for
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the logarithmically divergent integral encountered, and evaluating the finite one, we
easily arrive at

∫
d2ωℓ

ℓ2 gµν − 4 ℓµ ℓν
(ℓ2 −∆)3

= − iπ
2

2
gµν

(
πω−2 Γ(3− ω)

∆2−ω
− δω,2

)
. (4.12)

For an alternative and detailed proof of eq. (4.12), see Appendix M.9 Applying eq. (4.12)
to ℓσℓρ terms of eq. (4.10) with d4ℓ

(2π)4
→ d2ωℓ

(2π)2ω
, we find,

λ =

{ 0 , ω = 2

−1 , ω = 2− ǫ (DR)
. (4.13)

This is consistent with the symmetric integration in 4-dimensions (ω = 2), but, is also
consistent with the usual tabulated textbook result [34] from dimensional regularisation
in 4 − 2ǫ-dimensions (ω = 2 − ǫ). Equation (4.13) shows that λ is discontinuous at
d = 2ω = 4. Then the Question arises: which λ value to believe in? Answer: the one
that is indicated by well defined, calculable, boundary conditions and symmetries of the
underlying theory.

The above parenthesis to our calculation motivates us to avoid the direct calculation
of integral (4.10) but set d = 4 everywhere and treat λ as an unknown parameter to
be defined later within a physical context or experiment. Substituting eq. (4.10) into
eq. (4.9) we arrive at:

M2 ∼
i

8π2

{
λ− 6m2

W

∫ 1

0

dx

∫ 1−x

0

dy
1− 2 x (1− x− y)

∆

}
. (4.14)

Evaluating the double finite integral in eq. (4.14), and restoring the proportionality
factor given below eq. (4.3), we obtain,

M2 = − e2g

(4π)2mW

{
−2λ+

[
3 β + 3 β (2− β) f(β)

]}
, (4.15)

where

β =
4m2

W

m2
H

, and, f(β) =

{
arctan2

(
1√
β−1

)
, β ≥ 1

−1
4

[
ln
(

1+
√
1−β

1−
√
1−β

)
− i π

]2
, β < 1

. (4.16)

Our final step is to determine the unknown parameter λ in eq. (4.15). For this,
we need physics that reproduces M2 in a different and unambiguous way. One choice,
probably not the only one, is to adopt the Goldstone Boson Equivalence Theorem
(GBET) [129–131] which states that the amplitude for emission or absorption of a
longitudinally polarised W -boson at high energy becomes equivalent to the emission

9The same result is obtained by standard algebraic tricks. We would like to thank R. Jackiw for
communicating his calculation to us.
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or absorption of the Goldstone boson that was eaten. Mathematically, this is written
by the following equation in ref. [176],

S[W±
L , physical ] = in S[ s±, physical ] , (4.17)

which says that the S-matrix elements for the scattering of the physical longitudinal
vector bosons WL with other physical particles are the same as the S-matrix elements
of the theory where the WL’s have been replaced by physical Goldstone bosons (s±).

According to ref. [176], within perturbation theory and in the limit of high energies,
m2

W/s→ 0, GBET can be expressed with physics in two different limits of the theory:
(a) g2/λH → 0, or (b) m2

H/s→ 0.

The limit (b) is irrelevant10 for defining λ in eq. (4.15) so we completely focus on
the limit (a). It is easy to see that, in the unitary gauge, the WL’s do not decouple11

for vanishing gauge coupling g. Consider for example the diagrams in Fig. 4.1. There
is always a m2

W from the HWW -vertex that cancels another m2
W sitting in the denom-

inator of the longitudinal part for the internal W -boson propagator expression written
in the unitary gauge. So, as it was already noted in the paragraph below eq. (4.9), in
the limit g → 0 there are remaining non-decoupled terms. Unfortunately, these effects
may be obscured or misjudged by the regularisation method needed to handle diver-
gent, intermediate, loop integrals. This is exactly what happens here when trying to
calculate λ directly from its ambiguous form in eq. (4.10). On the other hand however,
at the exact g = 0, with fixed v.e.v v and Higgs quartic coupling λH , eq. (4.17) suggests
that the Goldstone bosons (s±) should reappear at the physical spectrum of the theory,
while the longitudinal components of W ’s become unphysical. At this limit, the SM is
a spontaneously broken global SU(2)L × U(1)Y -symmetry that couples, minimally, to
electromagnetism. The interactions between the Higgs and photon with the Goldstone
bosons are simply those of a spontaneously broken scalar QED with U(1)em,

H s+ s− : − im
2
H

v
, γ s+(p1) s

−(p2) : −ie(p1 + p2)
µ, γ γ s+ s− : 2ie2gµν . (4.18)

Armed with these Feynman rules we calculate the diagrams in Fig. 4.2 below. By
doing so, we introduce again three momentum variable shift vectors, one for each dia-
gram, exactly in the same way we did for the calculation of the diagrams in Fig. 4.1.
The Lorentz structure of the amplitude is completely analogous to eq. (4.2) with
M1,2 → M1,2(GBET), but now due to the scalar propagators, the superficial degree
of divergence, for diagrams contributing to M2(GBET), is D = −2. Hence, all inte-
grals involved in M2(GBET) are finite and in addition, they are independent of any
momentum integration shift vector variable.

As a consequence, M2(GBET) is well defined, calculable, independent of any regu-
larisation method, and at the limit of g → 0 (or β = 4m2

W/m
2
H → 0) is

M2(GBET) = − 2 e2 g

(4π)2mW

, β → 0 . (4.19)

10The limit (b) simply says that matrix elements for the theory which contains the physicalWL’s and
zero v.e.v, are equal to those produced by scattering of massless physical Goldstone bosons (instead
of WL’s) at high energies. We have checked that eq. (4.17) is satisfied in this limit.

11This is another advantage of calculating in the unitary gauge.
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Figure 4.2: Charged Goldstone boson contributions to H → γγ in the limit of g → 0.

By equating eq. (4.15) (in the limit β → 0) and eq. (4.19) which represent the l.h.s
and r.h.s of the GBET condition (4.17), respectively, we find

λ = −1 . (4.20)

This value agrees with dimensional regularization (ref. [33,171]) when the limit d→ 4
is taken [see eq. (4.13)]. The final form of the M2 in eq. (4.2) is

M2 = − e2g

(4π)2 mW

{
2 +

[
3 β + 3 β (2− β) f(β)

]}
, (4.21)

with β, and f(β) defined in eq. (4.16).

To complete the picture there is still the coefficient M1 in eq. (4.2) to be calculated.
Naive power counting says that this is by two powers more divergent than M2 and,
in general, undetermined. It can be fixed however by using quantum gauge invariance
i.e., conservation of charge, for the U(1)em,

k1µMµν = 0, k2νMµν = 0, k21 = k22 = 0, (4.22)

and thus from eq. (4.2),
M1 = −(k1 · k2)M2 . (4.23)

Equation (4.23) is substituted to eq. (4.2) with M2 read by eq. (4.21). This is exactly
the same result for the W -boson contribution to H → γγ amplitude, that has been
obtained in refs. [161–164,169] using dimensional regularisation in Rξ-gauges.

It is interesting here to note the result from the explicit algebraic manipulation of
M1 in the unitary gauge and check the validity of gauge invariance [eq. (4.23)]. Exactly
as for M2, the condition a = b = c for the arbitrary vectors given in eq. (4.7) is crucial
in reducing the divergence of M1 down to a logarithmic one [see expression L.12].
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In d-dimensions the expression for M1 is finally independent of any arbitrary vector
and, up to a proportionality factor, reads:

M1 ∼ 4

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddℓ

(2π)d

{
4(ℓ · k1)(ℓ · k2) + 2( 2d − 1)ℓ2(k1 · k2) + (d−1

d )(4− d) ℓ2m2
W

(ℓ2 −∆)3
+

+
(d− 1)m4

W − 3m2
W m2

H + (1− d)x(x+ y − 1)m2
W m2

H

(ℓ2 −∆)3

}
. (4.24)

Clearly the first integral in eq. (4.24) is ill-defined in four dimensions. If however, we
insist in doing the calculation of eq. (4.24) in d = 4 with symmetric integration, like
in refs. [174, 175], we find that gauge invariance [eq. (4.23)] is not satisfied. This is of
course unacceptable. By going a little bit deeper, gauge invariance is lost because of
the term proportional to 4 − d in eq. (4.24) which vanishes when d = 4. Quite the
contrary in DR, this term results in a non-zero contribution when mW 6= 0, since the
(log-divergent) integral in front of (4−d) contains a simple pole at d = 4. This changes
the final result and renders eqs. (4.21), (4.24) and (4.23) consistent, only if λ = −1.
This outcome is in agreement with ref. [169].

Few remarks are worth mentioning here. Had we started first by calculating M1,
there would be no possibility of defining unambiguously λ without using a gauge in-
variant regulator: the gµν part of the amplitude at g → 0 involving Goldstone bosons
[see diagrams in Fig. 4.2] is not well defined - an integral as the one in eq. (4.12)
appears again. Another remark is that the same expressions for the coefficients Aij

displayed in Appendix L in the unitary gauge, appear also when one exploits the Rξ-
gauge. In the latter there are in addition ξ-dependent terms (see ref. [169]) that vanish
in the end from unphysical scalar contributions. Therefore, the logarithmic ambiguity
in eq. (4.12), found here in the unitary gauge, is similar in every other gauge.

4.3 Four Dimensional Regularization (FDR)

So far we have proposed a regularization scheme which is four-dimensional and uses
the basic symmetries and underlying physics of the SM. However, in more complicated
models or observables with more parameters to adjust, such a scheme can become
cumbersome. For example, it is not always obvious which physics argument will fix
undefined integrals.

Very recently, R. Pittau (see ref. [172]) proposed a scheme that is fairly easy to han-
dle and, to the best of our knoweledge, is the closest to four dimensional calculations,
thereby coined four-dimensional regularisation/renormalization scheme or just FDR.
According to this scheme, infinite bubble graph contributions, i.e., large loop momenta
contributions that do not depend upon external momenta, are absorbed into the shift
of the vacuum while the remaining finite corrections are calculable in four-dimensions
in addition to being Lorentz and gauge invariant.

We have applied FDR into the calculation of the H → γγ amplitude and found
agreement with our physics approach and with DR results. In FDR, one introduces
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an arbitrary scale µ which is considered to be much smaller than internal momenta
and particle masses in loops. Self contracted loop momenta quantities like ℓ2 become

ℓ
2
= ℓ2−µ2, while for gauge invariance to hold, vector momenta, pµ, remain untouched.

For example the integral of eq. (4.12) becomes,

∫
[d4ℓ]

ℓ
2
gµν − 4 ℓµ ℓν

D
3 =

∫
[d4ℓ]

−µ2

D
3 gµν , (4.25)

where D = (ℓ
2 − ∆) and [d4ℓ] stands for integration over d4ℓ, dropping all divergent

terms from the integrand (see below) and taking the limit µ → 0. In going from l.h.s
to r.h.s of eq. (4.25) the symmetry property ℓµℓν = gµν ℓ

2/4 has been used in four
dimensions. Then, using the partial fractions identity,

1

D
3 =

[
1

ℓ
6

]
+∆

(
1

D
3
ℓ
2 +

1

D
2
ℓ
4 +

1

Dℓ
6

)
, (4.26)

the term in square bracket is recognised as divergent and therefore removed, and inte-
grating the r.h.s of eq. (4.25) over [d4ℓ] one obtains

∫
[d4ℓ]

−µ2

D
3 ≡ −∆ lim

µ→0
µ2

∫
d4ℓ

(
1

D
3
ℓ
2 +

1

D
2
ℓ
4 +

1

Dℓ
6

)
= − iπ

2

2
, (4.27)

i.e., exactly the same result as in DR which eventually leads to λ = −1 consistent with
gauge invariance and GBET. What in fact FDR scheme does, is to restate the correct
DR answer through the regulator µ2 keeping eq. (4.12) correct in d = 4. We therefore
understand that the constant (β-independent) term of eq. (4.21) in FDR arises from
the fact that the arbitrary scale, µ2, must disappear from physical observables.

4.4 Discussion

It is evident that our calculation for the amplitude incorporates two physical inputs:
one is the conservation of charge and the other is the equivalence theorem. They are
both direct consequences of the gauge invariance of the underlying physical theory.
The first one is experimentally indisputable while the second one is theoretical12 and
has been proven in ref. [179] that is valid in any spontaneously broken renormalizable
theory, like for example the SM. One may think however that there is a loophole in
our use of this second argument: so far, and, to our knowledge, the replacement of
the W -bosons with Goldstone bosons at high energies has been proven to be valid
only for external W -bosons (see refs. [176, 180, 181]) and not for internal ones which
is the case exploited here. Although it has been tested in several phenomenological
examples [182], a formal, to all orders, proof is still missing. Although this may be
true, it is difficult to argue against the validity of decoupling limit g → 0 (with fixed
v.e.v and Higgs quartic coupling) discussed in the paragraph above eq. (4.18).

12This is not entirely correct. There is of course the high energy behaviour of e+e− → W+W−

found at LEP [139] consistent with the GBET.
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Is there another physics context from which one can define λ? One possibility is to
exploit the low energy Higgs theorem (ref. [161,183–185]) instead. Although this may
serve as a consistency check, and indeed is compatible with λ = −1, we cannot use it to
define λ. The reason here is threefold: first, when treating the Higgs field as an external
background field with zero momentum, one needs to take partial derivative w.r.tmW of
the 2-point photon vacuum polarization amplitude, Πγγ(q

2). The later, is notoriously
difficult, if meaningful, to be calculated in the unitary gauge. Second, according to
ref. [161], we know that to the lowest order in weak coupling, the amplitude for the
process 〈γγ|H〉 is proportional to 〈γγ|Θµ

µ |0〉, where Θµ
µ = 2m2

WW
+W− + ... is the

improved energy momentum tensor [186]. However, the calculation of 〈γγ|Θµ
µ |0〉 goes

through the same steps as the calculation for the H → γγ amplitude and therefore
involves the same ambiguity for calculating λ. Third, one could examine the W -boson
contribution to H → γγ within the dispersion relation approach. It can be shown
(ref. [187]) that the non-vanishing limit at gW → 0 is due to a finite subtraction
induced by the corresponding trace anomaly [188]. However, in order to calculate
unambigiously this finite piece, one has to make full use of a (physical) boundary
condition of the theory.

As a final remark, suppose that we did not know DR and wanted to calculate a
certain observable in 4-dimensions. In this observable we encounter singularities i.e.,
undefined and undetermined integrals. Then we use physics arguments to fix these
ambiguities. However, we can always question whether we are using the right physics
set up or not. In that sense the final judgement should come from the experiment.
Therefore it may be not only academic to ask whether LHC could see the difference
between λ = −1 and λ = 0? Setting the SM Higgs mass mH = 125 GeV, and including
the top-loop contribution, we find

Br(H → γγ, λ = 0)

Br(H → γγ, λ = −1)
≈ 0.46 . (4.28)

This is certainly within LHC’s sensitivity for 14 TeV c.m energy and luminosity of
30 fb−1 (see for example Fig. 3 in ref. [189]). In fact, the recent observation by LHC

experiments [4, 5] indicates a value Br(H→γγ, (exp))
Br(H→γγ, λ=−1)

= 1.6 ± 0.3 (see ref. [190]) which
highly disfavours the case λ = 0 by almost four standard deviations. We can turn this
around and state that this is an indirect hint towards the validity of the equivalence
theorem.
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4.5 Conclusions

In this work we review theW -gauge boson loop contribution to the H → γγ amplitude
in the unitary gauge. Our objective is to fix intermediate step indeterminacies arising
from divergent diagrams by making full use of physics at d = 4 much in the same way
as in the calculation of the chiral anomaly triangle in the previous Chapter.

We anticipate a finite result for the loop induced H → γγ-amplitude in the renor-
malizable SM. Therefore the amplitude has to be independent of any shifting momen-
tum variables we have originally introduced. But finite or even log-divergent integrals
are independent of these vectors, so the vectors have to be accompanied only by infi-
nite contributions, if at all. Therefore, infinities and arbitrary vectors are eliminated
altogether by a certain combination among them [see eq. (4.7)].

The whole calculation in the unitary gauge boils down to a logarithmically divergent
integral given by eq. (4.10). We find that, this integral results in two different values
depending on whether d → 4 or d = 4. This is due to a surface term remaining at
the exact d = 4 case after the part-by-part integration in d-dimensions presented in
Appandix M. To proceed, we identify this integral with an undefined parameter λ [see
eq. (4.12)]. This parameter is then fixed unambiguously by assuming the validity of
the Goldstone Boson Equivalence Theorem (GBET). Its value is consistent with DR
in the limit d→ 4.

In our calculation we are very careful not to perform shifting of integration variables
for highly divergent integrals by introducing three arbitrary momentum variable shift
vectors straight from the beginning. Divergencies and arbitrariness from these unknown
vectors are altogether removed, leaving behind a log-like divergent integral in M2 of
eq. (4.2). This is defined by a physical input taken from the GBET and is connected
to M1 by electromagnetic charge conservation.

As noted many times in the text, the key point towards deriving an unambiguous
amplitude for H → γγ in the unitary gauge is the limit of vanishing gauge couplings;
this is an aspect of GBET [eq. (4.17)]. In this limit, the Goldstone boson loop contri-
bution to the coefficient M2 is finite, i.e., independent of any regularisation scheme.

We also saw that DR (FDR), a regularisation scheme introduced to maintain Ward
Identities at intermediate steps of a calculation, supports the GBET in the limit d→ 4
(d = 4). On the contrary, we find that, performing the integrals in d = 4 with
symmetric integration is not a good choice because it leads to the violation of gauge
invariance [see eq. (4.23) and the discussion below]. The main reason is due to surface
terms that are developed in exactly d = 4 dimensions [see discussion below eq. (4.10)
and Appendix M]. The latter are axiomatically discarded in DR [33, 171]. Another
reason is the appearance of the (d− 4)-term in the numerator of eq. (4.24).

In conclusion, the four-dimensional calculation of H → γγ amplitude in the unitary
gauge is ambiguous without introduction of a physics input beyond gauge invariance.
As we have demonstrated, this physics, which uniquely defines the amplitude, may arise
from the Goldstone Boson Equivalence Theorem (GBET). This effectively proves that
GBET constitutes an additional important pillar of the Standard Model dynamics.



Chapter 5

Conclusions and future directions

Theories beyond the SM are worth studying since they provide possible answers to
questions that in the SM framework remain open. In this thesis we deal with topics
related to some of these questions such as the searches about the nature of dark matter,
the mechanism of mass generation, the identification of the recently discovered particle
at LHC with the Higgs boson of SM.

We used Quantum Field Theory tools throughout our work and developed a new
method to handle different kind of divergences that appear during the calculations. In
the basis of this method we showed a preference in performing the calculations in the
physical choice of four dimensions and in the framework of the physical gauge (unitary
gauge). We deliberately chose this gauge, although such a choice leads to difficulties
coming from the high degree of divergences associated with it. We successfully applied
this method in two different cases: the evaluation of chiral anomalies and their role
to heavy fermion non-decoupling effects and the clarification of some issues in the
decay of Higgs boson to two photons in the SM. In the last case, to the best of our
knowledge, the use of this method constitutes a novel element. The encouraging fact
is that we were able to verify well known results in the literature and received support
from another recently proposed method (FDR) that also operates in the same four-
dimensional basis. Another fact is that our method is applicable in every other gauge.
The only negative fact so far, is the absence of calculational flexibility, since one has
to handle a considerable amount of calculations. However, this can be bypassed by
developing an appropriate computational program.

Our work constitutes a triptych with common element the use of QFT tools and
the treatment of interesting topics of modern physics.

First, we presented a scenario where dark matter particles can decay into SM leptons
through a light mediator. In this case we studied conventional dark matter searches, but
a more detailed analysis has been performed for the case of unconventional dark matter
searches, where low energy electrons are detected in the final state. We developed the
theoretical framework where different models about this process, are presented. We
showed that the dark sector “communicates” with the SM one, through interactions
with an X-boson which couples to the SM gauge sector. This X boson could be
massless or massive, depending on the model. We have also presented a detailed study
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of time modulation effects and have considered that the dark matter particle can be
a Dirac or Majorana fermion. In the second case the cross section for annihilation
to fermions is suppressed by a factor of β2 ≈ 10−6 compared with the corresponding
cross section for the Dirac case. Studying the low energy electron recoil, we have
considered only hydrogen-like atoms. However, we have found the cross section as
a function of binding energy. This fact manifests indirectly how the cross section
depends on the choice of the target material. For accurate results one should consider
the real electronic wave-functions in the target’s atoms. There was a proposal for the
development of an experimental device with promising abilities in the dark matter
non-conventional searches. Subsequently, astrophysical results which showed an excess
in γ-ray emission in our galaxy, motivated us to study dark matter scattering processes
where one or two photons were included in the final case.

Especially we were concerned about fermionic loop induced triple interactions of this
type. This, naturally led us to generalize this special case and study the most general
one loop triple gauge boson vertex. A complete one particle irreducible vertex for
three off-shell gauge bosons is a useful tool in analyzing low energy inelastic scattering
processes. We constructed the most general Lorentz invariant triple gauge boson vertex
containing one fermionic loop. During this construction we encountered the case of
linearly divergent integrals. In order to handle this problem we introduced arbitrary,
constant four-vectors and performed the entire calculation in four dimensions. We chose
this method instead of dimensional regularization in order to avoid any difficulty with
the γ5 anti-commutativity in the case of more than four dimensions. To determine
the complete form of triple gauge boson vertex, we used Ward Identities and Bose
symmetry and showed that the final result is not divergent, but ambiguous. This fact
is directly connected with the chiral anomalies. The anomalous term is responsible for
the anomaly that characterizes the vertex. In an anomalous free model this term does
not exist and no ambiguity appears. In this basis we examined what happens in the
case that the virtual fermions circulated in the loop become very heavy. In this case the
anomalous term plays a crucial role in rendering the whole theory self-consistent. The
reason is that, by integrating out the heavy fermions from an anomalous free theory,
there is a surviving term. This term exactly cancels the anomalous term that appears
in the low energy theory after integrating out the heavy particles. These heavy fermions
non-decoupling effects render the low energy theory anomalous free. A next step was
the presentation of different applications of the triple gauge boson vertex in the SM
and some of its extensions. We constructed several anomalous free toy models with two
or three different external gauge bosons and a number of fermions and also considered
models with a fourth fermion generation and an extra gauge boson (Z ′-boson models).
In principle, these models can be used as a basis towards realistic extensions of the
SM.

Subsequently we used the method of arbitrary four-vectors to clarify some issues
about H → γγ decay in the SM. We performed the calculation of the matrix element
for this process, in exactly four-dimensions and in the unitary gauge. The choice of
the unitary gauge renders the amplitude highly divergent, due to the form of W boson
propagator. The arbitrary vectors play a crucial role in reducing these divergencies to
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logarithmic one. However the final result is ambiguous. In order to unambiguously
determine the result we used physics arguments, gauge invariance and the Goldstone
Boson Equivalence Theorem. As an alternative choice we checked our calculation using
the FDR method, a four-dimensional regularization scheme introduced to maintain the
Ward Identities in the intermediate steps of calculations. In both cases we verified the
well-known result in the literature for this process.

Certainly there are different extensions of this work. In the case of dark matter
searches through electron recoil one can make use of the realistic wave functions in-
stead of plane waves, to calculate the relevant cross section and event rates. An other
direction is the study of the process χ+H → (χ+H) (bound state), where in the final
state the WIMP, χ forms a bound state with the hydrogen atom. Furthermore, the
dark matter scattering process involving a photon in the final state, is an interesting
example of using the results from our analysis on triple gauge boson vertices.

Our study of triple gauge boson vertices opens a wide field of interesting applications
with perspectives in extensions of SM. We can mention here the (p, p) annihilation in
W -bosons, the examination of decoupling or non-decoupling effects of heavy fermions
in anomalous models by construction. In our work we studied several anomalous
free models and revealed the synergy between chiral anomalies and non decoupling
phenomena. The next step is to further extent this analysis in order to include chiral
anomalous models and investigate if an analogous synergy takes place.

From the technical point of view, we are interested in applying the method of four-
dimensional calculations using arbitrary vectors to other observables except from triple
vertices that contain internal or external gauge bosons. Possible candidates are FCNC
(Flavour Changing Neutral Currents) phenomena, such as top quark decays of the form
t→ c h, t→ c Z, t→ c γ, the anomalous muon magnetic moment etc.

A big challenge constitutes the proof of renormalizability of a theory in the unitary
gauge by using our four-dimensional approach. As we know, there is not so far a
rigorous proof of renormalizability of a theory working in the unitary gauge from the
beginning. The usual approach is to prove the renormalizability in the general Rξ gauge
and then to take the appropriate limits in order to obtain the desired property in the
unitary gauge. It is evident that the calculational effort will be incomparable with
that of the one loop calculation case. This manifests the necessity of developing and
properly incorporating our method in the framework of a suitable computing program.
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Appendix A: Dirac matrices and DR basics

Since we have repeatedly used some basic mathematical concepts in our calculations,
we present in this first Appendix a short, representative collection of them. First of
all some issues of basic Dirac algebra are presented, focusing on some properties of
γ-matrices, especially on anticommutation relations and relations that traces of a set
of γ-matrices obey. These have been used extensively in Chapters 2 and 3 during
calculations of cross sections and triangular anomalies respectively. The notation used
here, follows ref. [34]. In momentum space the Dirac equation has the following form:

/pus(p) = mus(p), (A.1)

where us(p) represents a spinor with spin s, momentum p and mass m, and as usually
/p ≡ γµpµ. The γ

µ represent a set of four-dimensional matrices which satisfy the follow-
ing anticommutation relation {γµ, γν} = 2 gµν , where gµν = gµν ≡ diag[1,−1,−1,−1]
is the metric tensor and µ, ν = (0, 1, 2, 3). In a chiral basis these matrices have the
form:

γµ =

(
0 σµ

σµ 0

)
, (A.2)

where σµ = (I, ~σ) and σµ = (I,−~σ). Here I represents the 2 × 2 unit matrix and
~σ = (σ1, σ2, σ3), where σ1, σ2 and σ3 are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.3)

We introduce the chirality matrix γ5 as follows:

γ5 = iγ0γ1γ2γ3 = − 1

4!
ǫµνρσγµγνγργσ =

(
−I 0
0 I

)
. (A.4)

Some useful properties that γ-matrices obey only in four dimensions are:

γµγµ = 4I4, γ
µγνγµ = −2γν , γµγνγργµ = 4gνρ,

γµγνγργσγµ = −2γσγργν , γ0(γµ)†γ0 = γµ, (γ0)2 = I4, (γ
0)† = γ0,

{γ5, γν} = 0, (γ5)2 = I4, (γ
5)† = γ5. (A.5)

Traces of γ-matrices satisfy the following relations:

Tr[I4] = 4, Tr[γµγν ] = 4gµν , Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ),

Tr[γ5] = 0, Tr[γµγνγ5] = 0, Tr[γµγνγργσγ5] = −4iǫµνρσ,

Tr[γµ1γµ2γµ3 ....] = Tr[.....γµ1γµ2γµ3 ],

Tr[γµ1γµ2γµ3 .....γµn ] = 0 = Tr[γµ1γµ2γµ3 .....γµnγ5]. (A.6)

The relation in the third line above is the cyclic property of the trace, and the expression
in the last line is valid when the number of γ matrices in the trace is an odd number.
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Using the definition and properties of γ5-matrix we can define two projection op-
erators, useful in chiral representation of fermionic fields:

ΨL ≡ PLΨ, ΨR ≡ PRΨ, (A.7)

where Ψ represents a four-component Dirac spinor, and PL and PR are the projection
operators defined as:

PL ≡ I4 − γ5

2
=

(
I 0
0 0

)
, PR ≡ I4 + γ5

2
=

(
0 0
0 I

)
. (A.8)

Since (γ5)2 = I4 the following relations are obvious:

PLPL = PL, PRPR = PR, PLPR = PRPL = 0. (A.9)

Secondly we append here some useful expressions about dimensional regulariza-
tion. In order to deal with calculations of Feynman diagrams that contain loops, one
introduces the Feynman parameters technique. The following decomposition of a com-
bination of propagator denominators usually appears :

1

A1A2...An

=

∫ 1

0

dx1...dxn δ
( n∑

i=1

xi − 1
) (n− 1)!

[x1A1 + x2A2 + ...+ xnAn]n
, (A.10)

where A1, A2, ...An are functions of the integration variable (loop momentum) and
x1, x2, ...xn are real numbers such that 0 < xi < 1 and x1 + x2 + .... + xn = 1, called
Feynman parameters. In order to proceed, we complete the square in the denominator,
shifting at the same time the integration variable p to absorb linear terms resulting
to a shifted integration variable ℓ. Subsequently the denominator is simplified taking
the form (ℓ2 − ∆)n, where ∆ is a scalar function of internal loop masses and inner
products of external momenta. The numerator is transformed in a function of even
powers of ℓ, since all terms that contain odd powers of the integration variable ℓ vanish
after symmetric integration. According to dimensional regularization we proceed from
four to d dimensions and then we calculate d-dimensional loop integrals. Since we have
completed the d-dimensional calculation, taking the limit d→ 4 we obtain the physical
result.
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A representative collection of some d-dimensional integrals in Minkowski space is
the following:

∫
ddℓ

(2π)d
1

(ℓ2 −∆)n
=

(−1)n i

(4π)d/2
Γ(n− d

2
)

Γ(n)

( 1

∆

)n− d
2

(A.11)

∫
ddℓ

(2π)d
ℓ2

(ℓ2 −∆)n
=

(−1)n−1 i

(4π)d/2
d

2

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−1

(A.12)

∫
ddℓ

(2π)d
ℓµℓν

(ℓ2 −∆)n
=

(−1)n−1 i

(4π)d/2
gµν

2

Γ(n− d
2
− 1)

Γ(n)

( 1

∆

)n− d
2
−1

(A.13)

∫
ddℓ

(2π)d
(ℓ2)2

(ℓ2 −∆)n
=

(−1)n i

(4π)d/2
d(d+ 2)

4

Γ(n− d
2
− 2)

Γ(n)

( 1

∆

)n− d
2
−2

(A.14)

∫
ddℓ

(2π)d
ℓµℓνℓρℓσ

(ℓ2 −∆)n
=

(−1)n i

(4π)d/2
Γ(n− d

2
− 2)

Γ(n)

( 1

∆

)n− d
2
−2

×

× 1

4
(gµνgρσ + gµρgνσ + gµσgνρ), (A.15)

where Γ(x) =
∫∞
0
tx−1e−tdt is the Euler Gamma function. This integral function is

everywhere analytic except at non-positive integers where it has simple poles. For
positive integers n it is Γ(n) = (n− 1)! and near its poles x = −n it has the following
expansion:

Γ(x) =
(−1)n

n!

( 1

x+ n
− γ + 1 + ...+

1

n
+O(x+ n)

)
, (A.16)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Often, as one takes the limit
d→ 4, the following expression appears:

Γ(2− d
2
)

(4π)d/2

( 1

∆

)2− d
2

=
1

(4π)2

(2
ǫ
− log∆− γ + log(4π) +O(ǫ)

)
, (A.17)

where ǫ = 4 − d. To obtain eq. (A.17) we have used eq. (A.16) and the following
expansion:

( 1

∆

)2− d
2

= 1− (2− d

2
) log∆ + ..., (A.18)

when d → 4. In the expression given by eq. (A.17) the pole is clearly isolated. This
isolation is useful in order to guarantee the cancellations of infinite quantities when
different Feynman diagrams are combined together.
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Appendix B: Feynman propagator

In this Appendix we will clarify some computational issues related to expressions ap-
pearing in Chapter[2]. In order to find the Feynman propagator in eq. (2.3) we recall
the definition of the action S =

∫
d4xL , where L is the Lagrangian density given

by eq. (2.2). First of all in eq. (2.2) we assume that the field Φµ(x) has the following

expansion as a Fourier integral, Φµ(x) =
∫

d4p
(2π)4

Φ̃µ(p) e
i p·x, where Φ̃µ(p) is the Fourier

transform of Φµ(x). Then ∂αΦµ(x) =
∫

d4p
(2π)4

Φ̃µ(p) (i pα) e
i p·x. Considering that the

field strength tensor is Φµν ≡ ∂µΦν−∂νΦµ, and using the first three terms of eq. (2.2),
the action takes the following form:

S ∼
∫

d4x

[
− 1

4
(∂µΦ

T
ν − ∂νΦ

T
µ )K (∂µΦν − ∂νΦµ) +

1

2
ΦT

µ M2 Φµ − 1

2
∂µΦT

µ Ξ ∂νΦν

]
=

=

∫
d4x

[
− 1

4

(
∂µΦν

T K ∂µΦν − ∂µΦν
T K ∂νΦµ − ∂νΦµ

T K ∂µΦν + ∂νΦµ
T K ∂νΦµ

)
+

+
1

2
ΦT

µ M2Φµ − 1

2
∂µΦT

µ Ξ ∂νΦν

]
. (B.1)

Using integration by parts one obtains:

S ∼ − 1

4

(∮

S
d3xµΦ

T
ν K ∂µΦν −

∫
d4xΦT

ν K ∂µ ∂
µΦν −

∮

S
d3xµΦ

T
ν K ∂νΦµ +

+

∫
d4xΦT

ν K ∂µ ∂
νΦµ −

∮

S
d3xνΦ

T
µ K ∂µΦν +

∫
d4xΦT

µ K ∂ν ∂
µΦν +

+

∮

S
d3xνΦ

T
µ K ∂νΦµ −

∫
d4xΦT

µ K ∂ν ∂
νΦµ

)
+

1

2

∫
d4xΦT

µ M2 Φµ −

−1

2

(∮

S
d3xµ ΦT

µ Ξ ∂νΦν −
∫
d4xΦT

µ Ξ ∂µ ∂νΦν

)
, (B.2)

where
∮
S is the surface integral over a 3-dimensional sphere S with infinite radius.

Considering that the fields Φµ(x) vanish at infinity, all the surface integrals vanish and
the action reads:

S ∼ 1

2

∫
d4x

[
ΦT

µ K ∂ν ∂
νΦµ −ΦT

µ K ∂ν ∂
µΦν + ΦT

µ M2Φµ + ΦT
µ Ξ ∂µ ∂νΦν

]
=

=
1

2

∫
d4xΦT

µ

[
gαβgµν K ∂α ∂β − gναgµβK ∂α ∂β + gµν M2 + gµα gνβ Ξ ∂α ∂β

]
Φν =

=
1

2

∫
d4x

∫
d4p

(2π)4

∫
d4p′

(2π)4
Φ̃T

µ (p) e
i p·x

[
gαβgµν K ∂α ∂β − gναgµβK ∂α ∂β +

+gµν M2 + gµα gνβ Ξ ∂α ∂β

]
Φ̃ν(p

′) ei p
′·x =

=
1

2

∫
d4x

∫
d4p

(2π)4

∫
d4p′

(2π)4
Φ̃T

µ (p) e
i p·x

[
gαβgµν K (−p′α p

′
β)− gναgµβK (−p′α p

′
β) +

+gµν M2 + gµα gνβ Ξ (−p′α p
′
β)

]
Φ̃ν(p

′) ei p
′·x. (B.3)
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Performing the integration over x and using the well-known integral representation of
the Dirac δ(4)-functional

∫
d4x
(2π)4

ei x·(p+p′) = δ(4)(p+ p′), one finds:

S ∼ 1

2

∫
d4p

(2π)4

∫
d4p′ Φ̃T

µ (p)

[
gαβgµν K (−p′α p′β)− gναgµβK (−p′α p′β) +

+gµν M2 + gµα gνβ Ξ (−p′α p′β)
]
Φ̃ν(p

′) δ4(p+ p′) =

= −1

2

∫
d4p

(2π)4
Φ̃T

µ (p)

[
gµν K p2 − K pµ pν − gµν M2 + Ξ pµ pν

]
Φ̃ν(−p) =

= −1

2

∫
d4p

(2π)4
Φ̃T

µ (p)

[
(K p2 −M2)(gµν − pµ pν

p2
) + (Ξ p2 −M2)

pµ pν

p2

]
Φ̃ν(−p),

(B.4)

where in the third line the integration of δ(4)-function over p′ has set p′ → −p. If we
define

∆µν(p) ≡ −
(
K p2 −M2

)(
gµν − pµ pν

p2

)
−

(
Ξ p2 −M2

)
pµ pν

p2
, (B.5)

then the Feynman propagator D̃µν(p) is required to satisfy the following equation in
momentum space:

∆µν(p) D̃µα(p) = i gνα (B.6)

Decomposing the propagator into a transverse and a longitudinal part as follows,
i D̃µν(p) = (gµν − pµ pν

p2
)D̃T + pµpν

p2
D̃L, we can easily conclude that D̃T = (K p2−M2)−1

and D̃L = (Ξ p2−M2)−1, verifying eq. (2.3). Applying eq. (2.3) in different models we
can find in each case the corresponding form of the propagator.



110

Appendix C: Non-standard mass mixing

In this Appendix we find explicitly the effective action described inModel II (sec. 2.2.2).
In Model II (Non-standard mass mixing), by working in Feynman gauge (Ξ = 13×3),
assuming a trivial form for K and using eq. (2.13) for M2 we find for the propagator:

i D̃µν(p) = gµν




p2 − 1
4
g2Y v

2 −m2
Y −mY mX

1
4
gY g v

2

−mY mX p2 −m2
X 0

1
4
gY g v

2 0 p2 − 1
4
g2v2




−1

. (C.1)

Using eq. (2.4) for the effective action, by taking into account that
Jµ(p) ≡ (gY JY (p), gXJX(p), gJA3

(p))µ, and considering the expression above for the

propagator i D̃µν(p), we find up to order O(m2
Y ):

S[J ] =
1

2

∫
d4p

(2π)4

{
g2XJX(p) · JX(−p)

p2 −m2
X

+
g2Y JY (p) · JY (−p)

p2 −m2
Z

+
g2 JA3

(p) · JA3
(−p)

p2 −m2
Z

−

− g2 g2Y v
2

4 p2 (p2 −m2
Z)

(
JY (p) + JA3

(p)

)
·
(
JY (−p) + JA3

(−p)

)
+

+
gX gY mX mY

p2 (p2 −m2
X)(p2 −m2

Z)

[
p2
(
JX(p) · JY (−p) + JX(−p) · JY (p)

)
−

− 1

4
g2v2

(
(JA3

(p) + JY (p)) · JX(−p) + (JA3
(−p) + JY (−p)) · JX(p)

)]}
, (C.2)

where m2
Z = 1

4
v2(g2Y + g2) + O(m2

Y ). Changing the integration variable p → −p, the
terms in the second line and terms in the square bracket in the expression above are
multiplied by a factor 2. Then the expression for S[J ] is simplifying further:

S[J ] =
1

2

∫
d4p

(2π)4

{
g2XJX(p) · JX(−p)

p2 −m2
X

+
g2Y JY (p) · JY (−p)

p2 −m2
Z

+
g2 JA3

(p) · JA3
(−p)

p2 −m2
Z

−

− g2 g2Y v
2

4 p2 (p2 −m2
Z)

(
JY (p) + JA3

(p)

)
·
(
JY (−p) + JA3

(−p)
)
+

+
2 gX gY mX mY

p2 (p2 −m2
X)(p

2 −m2
Z)

[
− 1

4
g2v2

(
(JA3

(p) + JY (p)

)
· JX(−p) +

+p2 JX(p) · JY (−p)
]}

. (C.3)

As a next step we can analyze the expressions 1
p2 (p2−m2

X)(p2−m2
Z)

and 1
p2(p2−m2

Z)
in partial

fractions as follows:

1

p2 (p2 −m2
X)(p

2 −m2
Z)

=
1

m2
X m

2
Z

1

p2
+

1

m2
X (m2

X −m2
Z)

(
1

p2 −m2
X

)
−

− 1

m2
Z (m2

X −m2
Z)

(
1

p2 −m2
Z

)
, (C.4a)

and
1

p2(p2 −m2
Z)

=
1

m2
Z

(
1

p2 −m2
Z

− 1

p2

)
. (C.4b)
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Using the fact that JY (p)+JA3
(p) = Jem(p) for the electromagnetic current, and making

use of eqs. (C.4a) and (C.4b), the eq.(C.3) takes the form:

S[J ] =
1

2

∫
d4p

(2π)4

{
1

p2

[
− gX gY mY g

2v2

2mX m2
Z

Jem(p) · JX(−p) +
g2Y g2v2

4m2
Z

Jem(p) · Jem(−p)

]
+

+
1

p2 −m2
X

[
g2XJX(p) · JX(−p) +

2 gX gY mY

mX (m2
X −m2

Z)
p2 JX(p) · JY (−p)

− gX gY mY g
2v2

2mX (m2
X −m2

Z)
Jem(p) · JX(−p)

]
+

+
1

p2 −m2
Z

[−2 gX gY mX mY

m2
Z (m2

X −m2
Z)

p2 JX(p) · JY (−p) +
gX gY mX mY g2 v2

2m2
Z (m2

X −m2
Z)

Jem(p) · JX(−p) +

+g2Y JY (p) · JY (−p) + g2 JA3
(p) · JA3

(−p)− g2 g2Y v
2

4m2
Z

Jem(p) · Jem(−p)

]

+
2 gX gY mY

mX m2
Z

JX(p) · JY (−p)

}
. (C.5)

In what follows we can write the expression above as a function of the electric charge,
considering that e = g gY√

g2+g2Y
and absorb the vacuum expectation value using the

relation m2
Z = 1

4
v2(g2Y + g2) +O(m2

Y ).

As a result we obtain:

S[J ] =
1

2

∫
d4p

(2π)4

{
1

p2

[
− 2 e2 gX mY

gY mX
Jem(p) · JX(−p) + e2 Jem(p) · Jem(−p)

]
+

+
1

p2 −m2
X

(
m2

Z

m2
Z −m2

X

)[
g2XJX(p) · JX(−p)

(
1− m2

X

m2
Z

)
− 2 gX gY mX mY

m2
Z

JX(p) · JY (−p) +

+
2 e2 gX mY

gY mX
Jem(p) · JX(−p)

]
+

+
1

p2 −m2
Z

(
m2

Z

m2
Z −m2

X

)[
g2 JZ(p) · JZ(−p)

(
1− m2

X

m2
Z

)
+

2 gX gY mX mY

m2
Z

JX(p) · JY (−p)−

−2 e2 gX mX mY

gY m2
Z

Jem(p) · JX(−p)

]}
, (C.6)

where Jµ
Z = 1

cos θW

(
Jµ
A3

− sin2 θW Jµ
em

)
and also the following relation among different

currents

g2Y JY (p) · JY (−p) + g2 JA3
(p) · JA3

(−p)− g2 g2Y v
2

4m2
Z

Jem(p) · Jem(−p) =

= g2 JZ(p) · JZ(−p), (C.7)

has been used.
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Appendix D: Time modulation effects

In this Appendix we will show analytically how to obtain eq. (2.62) in the subsection
“Event rates” in Chapter 2. Using eq. (2.53) for the WIMP’s velocity distribution,

fℓ(β) =

(
3

2 < β2 >

)3/2
1

π3/2
e
− 3β2

2<β2> , (D.1)

we can calculate the velocity’s mean value in the unmodulated case:

(
βfℓ(β)d

3β√
< β2 >

)

0

→
∫
dΩ

β3fℓ(β)dβ√
< β2 >

=

(
2

3 < β2 >

)3/2
2π

π3/2

β3dβ√
< β2 >

e
−
(
1+ 3β2

2

√
<β2>

)
×

×
∫ π

0

sin θ dθ exp
(
− (2 β

√
3

2 < β2 >
cos θ

)
, (D.2)

where dΩ is the infinitesimal solid angle in spherical coordinates and a factor of 2π has
been included in the expression above due to integration over the azimuthal angle φ.
Changing the integration variable, cos θ → ξ, we find:

(
βfℓ(β)d

3β√
< β2 >

)

0

→
(

3

2 < β2 >

)3/2
2√
π

β3dβ√
< β2 >

e
−(1+ 3β2

2

√
<β2>

)
∫ 1

−1

dξ e
−
(
2β

√

3

2<β2>
ξ
)
=

=

(
3

2 < β2 >

)3/2
2√
π

β3

√
< β2 >

e
−
(
1+ 3β2

2

√
<β2>

) sinh

(
2β

√
3

2<β2>

)

β
√

3
2<β2>

dβ, (D.3)

verifying eq. (2.56).

In the case of time modulation effects, we consider the annual dependence of decay
rate and assume the following expression for the WIMP velocity:

v′ = v + v0 ẑ + v1 (sinα x̂ + cosα cos γ ŷ + cosα sin γ ẑ) , (D.4)

where v is the WIMP’s velocity in the local system, v0 → β0 =
√

2<β2>
3

is the sun’s

velocity, v1 is the Earth’s velocity relative to the solar system, γ ≃ π/6 is the slope of
the ecliptic and α is the time dependent angle that is the complementary angle of the
angle between v1 and x̂ (see Fig. 2.6). Analyzing the vector v = v n̂, where n̂ the unit
vector in the direction of v, in spherical coordinates we find:

v′ = (v sin θ cosφ+ v1 sinα)x̂+ (v sin θ sinφ+ v1 cosα cos γ)ŷ +

+(v cos θ + v0 + v1 cosα sin γ)ẑ. (D.5)

Squaring the expression above one obtains:

v′
2

= v2 + v0
2 + v1

2 + 2 v v1 sin θ cosφ sinα + 2 v v1 sin θ sinφ cosα cos γ +

+2 v v0 cos θ + 2 v v1 cos θ cosα sin γ + 2 v0 v1 cosα sin γ. (D.6)
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Dividing by v20 the expression above and using the abbreviations v
v0

= β
β0

≡ y and
v1
v0

= v1
β0

≡ δ we obtain the following expression relevant to convoluted decay rate:

β fℓ(β)d
3β√

< β2 >
→ 1√

< β2 >

(
3

2 < β2 >

)3/2
β3dβ

π3/2

∫
dΩ e

−β′2

β2
0 =

=

(
3

2(< β2 >)4/3

)3/2
β3dβ

π3/2

∫ 2π

0

dφ exp
[
− 2 y δ sin θ

(
cosφ sinα + sinφ cosα cos γ

)]
×

×
∫ π

0

sin θ dθ exp
[
−

(
1 + y2 + δ2 + 2 y cos θ + 2 y δ cos θ cosα sin γ + 2 δ cosα sin γ

)]
.

(D.7)

We can expand the integrand in the first line around δ, which is a perturbative param-
eter, and considering only terms of first power in this expansion we get:

∫ 2π

0

dφ exp
[
− 2 y δ sin θ cosφ sinα− 2 y δ sin θ sinφ cosα cos γ

]
≈

≈
∫ 2π

0

dφ

(
1− 2 y δ sin θ cosφ sinα− 2 y δ sin θ sinφ cosα cos γ

)
= 2π, (D.8)

since terms that contain cosφ and sinφ vanish after the φ-integration. For the θ-
integration we use cos θ = ξ and neglecting δ2-terms we obtain:

∫ π

0

sin θ dθ exp
[
−

(
1 + y2 + 2 y cos θ + 2 δ cos θ cosα sin γ + 2 δ cosα sin γ

)]
=

= e−(1+y2)

∫ 1

−1

dξ exp
[
−

(
2 y ξ + 2 δ cosα sin γ (1 + y ξ)

)]
≈

≈ e−(1+y2)

∫ 1

−1

dξ exp
(
− (2 y ξ)

)[
1− 2 δ cosα sin γ(1 + y ξ)

]
=

= e−(1+y2)

[
sinh(2 y)

y
− 2 δ cosα sin γ

(
1− y

2

d

dy

)∫ 1

−1

dξ exp(−2 y ξ)

]
=

= e−(1+y2)

[
sinh(2 y)

y
− 2 δ cosα sin γ

(
1− y

2

d

dy

)
sinh(2 y)

y

]
=

= e−(1+y2)

[
sinh(2 y)

y
− 2 δ cosα sin γ

(
3 sinh(2 y)

2 y
− cosh (2 y)

)]

= e−(1+y2) sinh(2 y)

y

[
1 + k δ cosα

]
, (D.9)

where

k =

[
2 y

cosh(2 y)

sinh (2y)
− 3

]
sin γ =

[
2 β

√
3

2 < β2 >

cosh

(
2 β

√
3

2<β2>

)

sinh

(
2 β

√
3

2<β2>

) − 3

]
sin γ. (D.10)
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Finally, taking into account the values of φ and θ-integrals, the expression of
eq. (D.7) for the mean value of WIMP’s velocity relevant to time modulated effects,
takes the following form:

β fℓ(β)d
3β√

< β2 >
→ 1√

< β2 >

(
3

2 < β2 >

)3/2
β3dβ

π3/2
2π e−

(
1+y2

)
sinh(2 y)

y

[
1 + k δ cosα

]
=

=

(
3

2 < β2 >

)3/2
β2dβ√
< β2 >

2√
π
e
−
(
1+ 3β2

2<β2>

) sinh

(
2 β

√
3

2<β2>

)

√
3

2<β2>

[
1 + k δ cosα

]
=

=

(
β fℓ(β)d

3β√
< β2 >

)

0

[
1 + k δ cosα

]
, (D.11)

where

(
β fℓ(β)d

3β√
<β2>

)

0

has been calculated in eq. (D.3) and is related to unmodulated

effects.
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Appendix E: Non relativistic cross section

This Appendix is based on ref. [84]. The problem is to find the WIMP - electron
bounded in an atom, cross section. In order to proceed we shall make two simplified
assumptions:

1. A hydrogen-like atom (H) is assumed i.e., a nucleus with charge +Ze and a single
bounded electron with charge −e.

2. The WIMP couples only to leptons and not to quarks. This is a sufficient condi-
tion to explain PAMELA/ATIC electron - positron excess events and it renders
the following analysis fairly simple.

Furthermore, since the WIMP velocity, β ≈ 10−3 is small, we will frame the whole
problem using non-relativistic quantum theory terms.

Although there are the following four processes that could take place in WIMP +
H-like atom collisions:

χ + H −→ χ + H (elastic) , (E.1)

χ + H −→ χ + H∗ (inelastic) , (E.2)

χ + H −→ χ + e− + H+ (production) , (E.3)

χ + H −→ (χ + H) (bound state), (E.4)

we shall consider only the situation in (E.3), where the electron emerges with high
momenta such that in the final state, |p′

e〉, its interaction with the Coulomb potential
in H-like atom is negligible, i.e, we can use plane wave states for incoming and outgoing
particles. The Hamiltonian of the system under consideration is :

Ĥ(rχ, re) =
P̂2(rχ)

2mχ

+
P̂2(re)

2me

+ VCoul.(|re|) + V (|rχ − re|)

= K̂(rχ) + Ĥ0(re) + V (|rχ − re|) , (E.5)

where we set the nucleus sitting at the origin of axes which is taken to be the lab
frame with rχ and re pointing towards the positions of the WIMP χ, and electron e,

respectively. K̂(rχ) is the kinetic energy operator for χ particle with plane wave states

〈rχ|pχ〉 =
1√
Ω
eipχ·rχ , (E.6)

with Ω being a finite cubic volume and our wave function in eq. (E.6) obeys peri-

odic boundary conditions on Ω. In addition, Ĥ0(re), is the unperturbed Hamiltonian
of the hydrogen like atoms. Obviously, we shall treat the potential V (|rχ − re|) as
perturbation in finding transitions between the initial state |α〉 into the final state |β〉.
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The initial state |α〉 consists of a plane wave for χ and a bound electron state
spectrum |nℓmℓ〉 with total energy Eα being :

Initial State : |α〉 = |pχ〉 |nℓmℓ〉 , Eα =
~
2p2χ
2mχ

+ En(Z) , (E.7)

whith |En(Z)| the binding energy of the hydrogen like atom, |E1(Z = 1)| = 13.6 eV.
Moreover, the final state consists of two continuum states, a χ-plane wave and an
electron plane wave and together with its energy reads :

Final State : |β〉 = |p′
χ〉 |p′

e〉 , Eβ =
~
2p

′2
χ

2mχ

+
~
2p

′2
e

2me

, (E.8)

where we assume implicitly that the nucleus has zero kinetic energy before and after
the collision [recall assumption 2 above]. Obviously in eqs. (E.5), (E.7) and (E.8), we
have neglected all angular momentum interactions in order to keep the discussion as
simple as possible.

In order to calculate the transition probability for |α〉 → |β〉 we need first to
calculate the matrix element 〈β|V (|rχ − re|)|α〉 and then essentially to square it. We
find:

〈β|V (|rχ − re|)|α〉 =

(
2π

Ω

)3/2

Ṽ (q) φnℓmℓ
(q− p′

e) , (E.9)

where

Ṽ (q) =

∫

Ω

d3r eiq·r V (|r|) , (E.10)

with r ≡ rχ − re and

φnℓmℓ
(q− p′

e) =

(
1

2π

)3/2 ∫
d3re e

i(q−p′

e
)·re ψnℓmℓ

(re) , (E.11)

is the momentum space wave function Fourier transform of the coordinate wave func-
tion ψnℓmℓ

(re) of the H-like atoms. In deriving eq. (E.9) we used the locality of the
potential energy V (r).

To finally write down Fermi’s Golden rule we also need the density of final states
which is given by

ρf (Eβ) =
1

dEβ

N∏

i=1

Ω

(2π~)3
d3pβi

, Eβ =
N∑

i=1

Eβi
. (E.12)

Then eq. (E.12) results in

ρf (Eβ) =
Ω2

dEβ

d3p′χ d
3p′e

(2π)6
, (E.13)
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where in our case Eβ is given by eq. (E.8). Which variables to use here depends on the
experimental arrangement. Let us say an experimenter can measure the energy deposit
of the ejected electron, E ′

e. Then for fixed E ′
e and eq. (E.8) we obtain dEβ = dE ′

χ and
thus,

ρf (Eβ) =
Ω2

(2π)6

(
mχ|p′

χ|
~2

dΩ′
χ

) (
me|p′

e|
~2

dΩ′
e dE

′
e

)
. (E.14)

The differential cross section is then obtained by dividing the transition probability
amplitude (first order in perturbation theory),

w
(1)
βα =

2π

~
ρf (Eβ) |〈β|V |α〉|2 , (E.15)

by the flux of the incoming particles, vχ/Ω. Putting this together with eqs.(E.14, E.15),
and (E.9) we arrive at

dσ

dE ′
e

=

(
mχ

2π~2

)2 |p′
χ|

|pχ|

(
me|p′

e|
~2

)
|Ṽ (q)|2 |φnℓmℓ

(q− p′
e)|2 dΩ′

χ dΩ
′
e . (E.16)

This can be written in a more transparent form as

dσ = σ(q)
|p′

χ|
|pχ|

dΩ′
χ |φnℓmℓ

(pχ − p′
χ − p′

e)|2 d3p′e , (E.17)

where σ(q) is the Born approximation for the cross section arising from just the scat-
tering between WIMP and electron particles. Apart from this, eq. (E.17) contains
the probability density of finding a bounded electron in H-like atom with momentum
pe = pχ − p′

χ − p′
e, i.e., an electron that obeys the momentum conservation. These

two terms come as not a surprise. What is a bit surprising is the ratio
|p′

χ|
|pχ| =

|v′

χ|
|vχ|

which is like a Sommerfeld enhancement term. This term comes around because we
have treated WIMP scattering off a brick wall (the H-atom). Note also that |p′

χ| must
be taken from energy conservation Eα = Eβ in eqs. (E.7) and (E.8).

Now we should compare eq. (E.17) with eqs. (2.45), (2.46) and (2.48). In eq. (2.48)
we must follow three steps :

1. Use the δ-function of momenta to make a trivial integration on pe.

2. Do not add an extra initial kinetic energy Te in δ-function for energies.

3. Write the eq. (2.46) in terms of the matrix element squared to obtain eq. (2.48)
and see if it agrees with eq. (E.17).

This should resolve the problem of finding the differential cross section and making the
various phase space integrations.

Let us suppose we consider a Yukawa potential of the form1

V (r) = − g2

4π

e−m
X
r

r
, (E.18)

1From now on we are working in the units system where ~ = c = 1.
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where mX is the mass of the U(1)-mediator we consider. By Fourier transforming this
we obtain:

Ṽ (q) = − g2

q2 +m2
X

. (E.19)

Replacing this in eq. (E.16), let g4 → 16π2α′αDM, and taking the limit q2 ≪ m2
X , we

get

dσ

dE ′
e

=
16π2α′αDM

m4
X

m2
χ

|p′
χ|

|pχ|
me|p′

e| |φnℓmℓ
(pχ − p′

χ − p′
e)|2 dξ dη , (E.20)

where the scattering angles are given by the following expressions:

p̂χ · p̂′χ = ξ , p̂χ · p̂′e = η , ξ, η ∈ [−1, 1] . (E.21)

In this case we find that:

|pχ − p′
χ − p′

e)|2 = p2χ + p
′2
χ + p

′2
e − 2 pχp

′
χξ − 2 pχp

′
eη +

+2 p′χp
′
e [ ξ η −

√
1− ξ2

√
1− η2 cos(φχ′ − φe′)], (E.22)

where φχ′ and φe′ are the azimuthal angles of vectors p̂′χ and p̂′e respectively. The
azimuthal angles are equal i.e., φχ′ = φe′ , however, because of the three vector momen-
tum conservation the vectors pe, pχ, p

′
χ are linearly dependent and therefore belong

to the same plane.

Momentum and energy conservation of eqs. (E.7) and (E.8) results in

|p′
χ| =

√
p2χ − 2mχ b(Z) − mχ

me

p′2
e , with p′e =

√
2meE ′

e , (E.23)

where b(Z) is the binding energy for hydrogenic atoms

b(Z) =
Z2

2a

e2

4π
=

Z2

2
me α

2
em , a ≃ 1

me αem

, (E.24)

with αem = e2

4π
≈ 1/137 and me ≃ 0.5 MeV. Furthermore, the momentum distribution

in the ground state of hydrogenic atoms reads:

φ100(q) =
23/2

πa

(Za)5/2

(Z2 + q2a2)2
. (E.25)

As we have seen in the case that the calculation of the cross section has been performed
using a field theoretical approach, this cross section exhibits a maximum for final
electron energy of around few eV. This happens because of a fast increase of the term
|p′

χ|
|pχ| |p

′
e| ∼

√
E ′

e and the almost constant value of |φ100|2 until 5 eV [see eq. (E.20)].

For higher electron energies, e.g., E ′
e & 10 eV, the probability |φ100|2 drops fastly as

1/E
′2
e resulting in overall decreasing of the cross section as E

′−3/2
e . For β = 0.001 and

Z = 1 we find,

σ ≃ 8× 10−40 cm2 . (E.26)

The cross section decreases with Z approximately as Z−4 for Z . 40.
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Appendix F: Averaged amplitude squared

In this Appendix we calculate explicitly the averaged amplitude squared for the fol-
lowing process e+χ→ e+χ. First we assume that the WIMP interaction to X-gauge
boson has the general form igXγ

ν(α̃ + β̃ γ5). Therefore if α̃ = 1, β̃ = 0 the WIMP is
considered a Dirac fermion, and if α̃ = 0, β̃ = 1 it is considered a Majorana fermion
respectively. The last choice of parameters α̃ and β̃ reflects the fact that Majorana
particles do not possess electromagnetic properties, thus only the axial component
of the coupling contributes to the final result. The matrix element for the process
e+ χ→ e+ χ in the case of a massive gauge boson interchanged reads:

iM = u(p′χ) i gX γ
ν(α̃ + β̃ γ5)u(pχ)

(
ǫ cos θW

(pe − p′e)
2 −m2

X

)

[
gµν −

(pe − p′e)ν(pe − p′e)µ
(pe − p′e)

2

]
u(p′e) i e γ

µ u(pe), (F.1)

where we have used eq. (2.8) for the form of the propagator and pχ, pe(p
′
χ, p

′
e) are the

incoming (outgoing) four-momenta of WIMPs and electron respectively. In order to
compute the differential cross section, we need an expression for |M|2, so we have to
find the complex conjugate of the amplitude. Averaging over fermion spins we obtain
the averaged amplitude squared:

|M|2 =
1

4

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2

∑

spins

{
u(p′χ)γ

ν(α̃ + β̃ γ5)u(pχ)

[
gµν −

(pe − p′e)ν(pe − p′e)µ
(pe − p′e)

2

]
u(p′e) γ

µ u(pe)

}

{
u(p′χ)γ

λ(α̃ + β̃ γ5)u(pχ)

[
gλξ −

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)

2

]
u(p′e) γ

ξ u(pe)

}∗
=

=
1

4

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2

∑

spins

{
u(p′χ)γ

ν(α̃ + β̃ γ5)u(pχ)

[
gµν −

(pe − p′e)ν(pe − p′e)µ
(pe − p′e)

2

]
u(p′e) γ

µ u(pe)

}

{
u(pχ)γ

λ(α̃ + β̃ γ5)u(p′χ)

[
gλξ −

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)

2

]
u(pe) γ

ξ u(p′e)

}
, (F.2)

where has been made use of the fact that a bi-spinor product can be complex-conjugated
as follows:

(
u(p′)γλ(α̃ + β̃ γ5)u(p)

)∗
=

(
u†(p′) γ0 γλ (α̃ + β̃ γ5)u(p)

)†
=

= u†(p)(α̃ + β̃ (γ5)†) (γλ)† (γ0)†u(p′) = u(p) γ0(γλ)† γ0 (α̃ + β̃ γ5)u(p′)

= u(p) γλ (α̃ + β̃ γ5)u(p′) (F.3)
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since (γ0)† = γ0, (γ5)† = γ5, {γλ, γ5} = 0 and γ0 (γλ)† γ0 = γλ. If we take α̃ = 1 and

β̃ = 0 in the expression above we find

(
u(q′)γξu(q)

)∗
= u(q)γξu(q′).

We can write the averaged amplitude squared in the form:

|M|2 = 1

4

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2(
I + II + III + IV

)
, (F.4)

where

I =
∑

s,r,t,ℓ

usα(p
′
χ) γ

ν
αβ (α̃ + β̃ γ5)βγ u

r
γ(pχ)u

t
δ(p

′
e) γνδε u

ℓ
ε(pe)

urζ(pχ) γ
λ
ζη (α̃ + β̃ γ5)ηθ u

s
θ(p

′
χ)u

ℓ
ι(pe) γλικ

utκ(p
′
e),

II = −
∑

s,r,t,ℓ

usα(p
′
χ) γ

ν
αβ (α̃ + β̃ γ5)βγ u

r
γ(pχ)u

t
δ(p

′
e) γνδε u

ℓ
ε(pe)

urζ(pχ) γ
λ
ζη (α̃ + β̃ γ5)ηθ u

s
θ(p

′
χ)u

ℓ
ι(pe) γ

ξ
ικ u

t
κ(p

′
e)
(pe − p′e)λ(pe − p′e)ξ

(pe − p′e)
2

,

III = −
∑

s,r,t,ℓ

usα(p
′
χ) γ

ν
αβ (α̃ + β̃ γ5)βγ u

r
γ(pχ)u

t
δ(p

′
e) γ

µ
δε u

ℓ
ε(pe)

urζ(pχ) γ
λ
ζη (α̃ + β̃ γ5)ηθ u

s
θ(p

′
χ)u

ℓ
ι(pe) γλικ

utκ(p
′
e)
(pe − p′e)µ(pe − p′e)ν

(pe − p′e)
2

,

IV =
∑

s,r,t,ℓ

usα(p
′
χ) γ

ν
αβ (α̃ + β̃ γ5)βγ u

r
γ(pχ)u

t
δ(p

′
e) γ

µ
δε u

ℓ
ε(pe)

urζ(pχ) γ
λ
ζη (α̃ + β̃ γ5)ηθ u

s
θ(p

′
χ)u

ℓ
ι(pe) γ

ξ
ικ u

t
κ(p

′
e)

(pe − p′e)µ(pe − p′e)ν
(pe − p′e)

2

(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)

2
. (F.5)

Here indices s, r, t, ℓ correspond to particles spin and α, β, γ, δ, ε, ζ, η, θ, ι, κ correspond
to matrix elements position. Making use of the completeness relation∑
us(p)us(p) = /p + m, we can compute each one of the coefficients I, II, III, IV

separately.

I =
∑

s,r,t,ℓ

usα(p
′
χ) γ

ν
αβ (α̃ + β̃ γ5)βγ u

r
γ(pχ)u

t
δ(p

′
e) γνδε u

ℓ
ε(pe)

urζ(pχ) γ
λ
ζη (α̃ + β̃ γ5)ηθ u

s
θ(p

′
χ)u

ℓ
ι(pe) γλικ

utκ(p
′
e) =

= Tr[(/p′e +me)γν(/pe +me)γλ]Tr[(/pχ +mχ)γ
λ (α̃ + β̃ γ5)(/p′χ +mχ)γ

ν (α̃ + β̃ γ5)].

(F.6)
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After a little standard trace algebra ( Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ) and
Tr[γµγνγργσγ5] = −4 i εµνρσ), we obtain :

I = 32

[
(α̃2 + β̃2)

(
(pχ · pe)(p′χ · p′e) + (pχ · p′e)(p′χ · pe)−m2

e(pχ · p′χ)
)
+

+m2
χ(α̃

2 − β̃2)

(
2m2

e − (pe · p′e)
)]
. (F.7)

Analogously for the coefficient II one finds:

II = Tr[(/p′e +me)γν(/pe +me)γ
ξ]Tr[(/pχ +mχ)γ

λ (α̃ + β̃ γ5)(/p′χ +mχ)γ
ν (α̃ + β̃ γ5)]×

×(pe − p′e)λ(pe − p′e)ξ
(pe − p′e)

2
= 0. (F.8)

The above result has been obtained after performing the trace algebra and imposing
the on-shell conditions p2e = m2

e = p
′2
e . Similarly for the next coefficient:

III = Tr[(/p′e +me)γ
µ(/pe +me)γλ]Tr[(/pχ +mχ)γ

λ (α̃ + β̃ γ5)(/p′χ +mχ)γ
ν (α̃ + β̃ γ5)]×

×(pe − p′e)µ(pe − p′e)ν
(pe − p′e)

2
= 0. (F.9)

Finally for the coefficient IV , and after imposing the same on-shell conditions as above,
we obtain:

IV = Tr[(/p′e +me)γ
µ(/pe +me)γ

ξ] Tr[(/pχ +mχ)γ
λ (α̃ + β̃ γ5)(/p′χ +mχ)γ

ν (α̃ + β̃ γ5)]×

×
(
(pe − p′e)µ(pe − p′e)ξ

(pe − p′e)
2

)(
(pe − p′e)λ(pe − p′e)ν

(pe − p′e)
2

)
= 0. (F.10)

The averaged matrix element squared in eq. (F.4) now reads:

|M|2 = 8

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2[
m2

χ (α̃
2 − β̃2)

(
2m2

e − (pe · p′e)
)
+

+(α̃2 + β̃2)

(
(pχ · pe)(p′χ · p′e) + (pχ · p′e)(p′χ · pe)−m2

e(pχ · p′χ)
)]
. (F.11)

We can simplify eq. (F.11) by considering the following kinematics that holds for the
non-relativistic case, where the initial electron is at rest:

pχ = (mχ +
~pχ

2

2mχ

, ~pχ), p
′
χ = (mχ +

~p′χ
2

2mχ

, ~p′χ), pe = (me,~0), p
′
e = (me +

~p′e
2

2me

, ~p′e). (F.12)
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In the case that the WIMP is a Dirac fermion (e.g α̃ = 1, β̃ = 0 ) from eq. (F.11) we
find:

|M|2 = 8

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2 [
2m2

χm
2
e +

~pχ
2 ~p′e

2

2
+
~p′χ

2 ~p′e
2

2
+
m2

χ
~p′e

2

2
−

− mχme

(
( ~p′χ · ~p′e) + ( ~pχ · ~p′e)

)
+

+
m2

e

2

(
~pχ

2 + ~p′χ
2
+ 2 ( ~pχ · ~p′χ)

)
−

− me

2mχ

(
~pχ

2( ~p′χ · ~p′e) + ~p′χ
2
( ~pχ · ~p′e)

)
+

+
~pχ

2 ~p′χ
2
(~p′e

2
+m2

e)

4m2
χ

]
. (F.13)

In the non-relativistic limit | ~pχ| ∼ | ~p′χ| = mχ β ≪ mχ (since β ∼ 10−3) and also
we assume me ≪ mχ. Therefore we can neglect terms proportional to me/mχ and
(me/mχ)

2 in the expression above. Another fact is that the outgoing electron is moving

with a very small velocity compared to WIMP’s velocity, so terms that contain ~p′e
2
(or

~p′e in any inner product), almost vanish. Taking into account all the assumptions
above, the only surviving term in the square bracket of the expression eq. (F.13) is the
first one. As a result we obtain for the averaged matrix element squared the following
simple expression:

|M|2 ≃ 16

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2

m2
χm

2
e. (F.14)

If the WIMP is a Majorana fermion (e.g α̃ = 0, β̃ = 1 since in this case the WIMP
does not possess electromagnetic properties) from eq. (F.11) we find:

|M|2 = 8

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2 [
m2

e

2

(
~pχ

2 + ~p′χ
2
+ 2 ( ~pχ · ~p′χ)

)
+
~pχ

2 ~p′e
2

2
+
~p′χ

2 ~p′e
2

2
−

− mχme

(
( ~p′χ · ~p′e) + ( ~pχ · ~p′e)

)
−

− me

2mχ

(
~pχ

2( ~p′χ · ~p′e) + ~p′χ
2
( ~pχ · ~p′e)

)
+

+
3m2

χ
~p′e

2

2
+
~pχ

2 ~p′χ
2
(~p′e

2
+m2

e)

4m2
χ

]
. (F.15)

With the same assumptions as previously, the dominant contribution comes from the
first term in the square bracket and is ≃ 2mχ β

2. In this case the averaged matrix
element squared reads:

|M|2 ≃ 16

(
ǫ gX e cos θW

(pe − p′e)
2 −m2

X

)2

m2
χm

2
e β

2. (F.16)

From this result we conclude that the cross section is suppressed by a factor β2 ≃ 10−6

in the case of a Majorana WIMP compared to the case of a Dirac WIMP.
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Appendix G: Lagrangian for a toy model

In this Appendix we consider a toy model and present some general features of the
relevant Lagrangian describing the three gauge boson vertex in Chapter 3. Consider a
gauge theory that contains a complex scalar field Φ charged under a local U(1) with
charge YΦ (in units of e), a vector spin-1 abelian gauge boson Aµ and a pair of Dirac
fermions EL and eR with U(1)-charges YL and YR respectively. This gauge theory is
described by the Lagrangian 2,

L = Lg(Φ, Aµ) + Lf (EL, eR, Aµ) + LY (EL, eR,Φ) , (G.1)

where the gauge boson-scalar interactions are

Lg(Φ, Aµ) = −1

4
FµνF

µν − 1

2
(G)2 + |DµΦ|2 − V (Φ) , (G.2)

while the chiral fermion and the Yukawa interaction parts of the Lagrangian in eq. (G.1)
are stored in:

Lf (EL, eR, Aµ) = EL (i /D) EL + eR (i /D) eR , (G.3)

LY (EL, eR,Φ) = −λe (EL Φ eR + eR Φ∗EL) , (G.4)

and DµΦ = ∂µΦ+ieYΦAµΦ, DµEL = ∂µEL+ieYLAµEL, and DµeR = ∂µeR+ieYRAµeR.
Lg is invariant under the local, U(1) gauge-transformation

Φ(x) → eieYΦΛ(x)Φ(x) , Aµ(x) → Aµ(x)− ∂µΛ(x) , (G.5)

EL(x) → eieYLΛ(x)EL(x) , eR(x) → eieYRΛ(x)eR(x) , (G.6)

iff YΦ = YL − YR. It is convenient to combine the left and right-handed fermions into
a single Dirac four-component spinor Ψ = (EL, eR)

T . Then the interaction Lagrangian
relevant to our study for triangle graphs reads:

Lint = −λeΨΦPRΨ− λeΨΦ∗PLΨ− eAµΨγ
µ (α + βγ5)Ψ , (G.7)

where

α =
YL + YR

2
, β =

YR − YL
2

. (G.8)

Under gauge transformations the 4-component field Ψ transforms as

Ψ(x) → eie(α+βγ5)Λ(x)Ψ(x) , (G.9a)

Ψ(x) → Ψ(x)e−ie(α−βγ5)Λ(x) , (G.9b)

which together with eq. (G.6) leave L invariant if YΦ = −2β.

2Throughout we follow the notation and conventions of ref. [34].
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We choose a renormalizable and gauge invariant potential V (Φ) such that the field
Φ acquires a non-vanishing vacuum expectation value, 〈Φ〉 = v/

√
2, which breaks

the local U(1) symmetry spontaneously. We expand eq. (G.1) around the minimum,
Φ = 1√

2
(v + h+ iϕ) and choose a gauge-fixing function in eq. (G.2),

G =
1√
ξ
(∂µA

µ − ξevϕ) , (G.10)

which eliminates the Goldstone boson - gauge boson mixing term. The mass of the
vector boson Aµ and of the unphysical Goldstone boson ϕ in this Rξ-gauge become

mA = e v YΦ , m2
ϕ = ξ m2

A . (G.11)

The ghost part of L is not relevant to our discussion for the one-loop triangle graphs
and is not presented. In terms of Ψ and Ψ, Lf + LY becomes

Lf (Ψ, Aµ) + LY (Ψ, h, ϕ) = Ψi/∂Ψ− eAµΨγ
µ(α + βγ5)Ψ−

−mΨΨ− β̃ΨhΨ− iβ̃Ψγ5ϕΨ (G.12)

where m = v β̃ and β̃ = λe√
2
.

This model, albeit very simple, captures the most important non-decoupling heavy
fermion effects in the trilinear gauge boson vertices in the Standard Model and its
extensions. In the context of chiral anomalies it has been exploited in ref. [97]. With
a light language deform it imitates the Standard Model with the difference that its
Ward Identities for the currents corresponding to the gauge symmetry in eq. (G.6) are
anomalous as we shall see below.
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Appendix H: Three gauge boson vertex

In this Appendix we explicitly evaluate the three external gauge boson, fermionic one
loop amplitude of Fig. 3.1. The loop function is calculated directly in four dimensions
using standard methods studied in refs. [30, 120,156–158]. Here, we review this calcu-
lation in detail for the toy model of Appendix G. At the end we generalise our results
to the case of three different external (massive or massless) gauge bosons.

By naive power counting we observe that the two diagrams in Fig. 3.1 are linearly
divergent. This means that their quantum amplitudes depend on the routing of the
internal momenta circulating in the loop. In each of the two diagrams we shift the
internal momenta with arbitrary four vectors aµ and bµ, respectively. By reading
Feynman rules from eq. (G.7), the graphs in Fig. 3.1 become:

Γµνρ(k1, k2; a, b) = (−1) e3 × Tr
{∫

d4p

(2π)4
×

×
[γµ(α+ βγ5)(/p− /k2 + /a+m)γρ(α+ βγ5)(/p+ /a+m)γν(α+ βγ5)(/p+ /k1 + /a+m)

[(p− k2 + a)2 −m2][(p+ a)2 −m2][(p+ k1 + a)2 −m2]

+
γµ(α+ βγ5)(/p− /k1 + b/+m)γν(α+ βγ5)(/p+ b/+m)γρ(α+ βγ5)(/p+ /k2 + b/+m)

[(p− k1 + b)2 −m2][(p+ b)2 −m2][(p+ k2 + b)2 −m2]

]}
,

(H.1)

where m is the fermion mass and (-1) is a fermionic loop factor. The integral in the
second line is the same as the first with the only difference that the upper two external
legs in Fig.3.1 are interchanged, i.e., {ν, ρ} ↔ {ρ, ν} and k1 ↔ k2. Dimensional
regularization is a scheme not well suited in calculating (H.1) due to the problems in
defining γ5 and ǫµνρσ in d > 4 spacetime dimensions. We here follow a method for
calculating (H.1) first presented by Rosenberg in ref. [120] and later used by Adler in
his classic paper on chiral anomaly [30]. Basically, this method relies on the fact that
the abiguous part of the integral is stored in two form factors in Γµνρ expansion, A1

and A2, that multiply the external momenta k2 and k1, respectively. We then exploit
physical arguments like for example conservation of charge, in order to determine the
form factors A1, A2 - all others, A3...A6 are finite and can be calculated directly in
4-dimensions.

Our next step is to write down the WIs. This can be done in many ways, probably
the most insightful is the use of functional methods (see for instance Chapter 9.6 in
the textbook of ref. [34]). One finds the classical WIs of eq. (3.3), but not the last term
on the r.h.s. We show below how to calculate this last term. We need first to calculate
the divergence of the 1PI vertex: qµΓ

µνρ = (k1 + k2)µΓ
µνρ. It is useful to employ the

following algebraic identity:

q/(α + βγ5) = −(α− βγ5)(/p− /k2 + /a−m) + 2βγ5m+ (/p+ /k1 + /a−m)(α + βγ5), (H.2)

in the first integral of (H.1) and a similar identity with a → b and k1 → k2 in the
second one.
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These identities split qµΓ
µνρ into two parts,

qµΓ
µνρ(k1, k2; a, b) = −2mβei

β̃
Γνρ(k1, k2; a, b) + Πνρ(k1, k2; a, b) , (H.3)

a part that is proportional to the fermion mass m and a part which contains divergent
two-point functions that would had been zero if shifting of the momenta variable was
allowed. The latter integrals will be responsible for the failure of the axial vector WI’s.
Explicitly Γρν and Πρν in eq. (H.3) read,

Γνρ(k1, k2; a, b) = −i e2 β̃ ×

×Tr

{∫
d4p

(2π)4
γ5(/p− /k2 + /a+m)γρ(α+ βγ5)(/p+ /a+m)γν(α+ βγ5)(/p+ /k1 + /a+m)

[(p− k2 + a)2 −m2][(p+ a)2 −m2][(p+ k1 + a)2 −m2]
+

+

∫
d4p

(2π)4
γ5(/p− /k1 + b/+m)γν(α+ βγ5)(/p+ b/+m)γρ(α+ βγ5)(/p+ /k2 + b/+m)

[(p− k1 + b)2 −m2][(p+ b)2 −m2][(p+ k2 + b)2 −m2]

}

=
−i e2mβ̃

2π2
ελνρσ k1λ k2σ I0(k1, k2,m) , (H.4)

where

I0(k1, k2,m) =

∫ 1

0

∫ 1−x

0

(α2 − β2) + 2(x+ y)β2

x(x− 1)k22 + y(y − 1)k21 − 2xyk1 · k2 +m2
. (H.5)

Obviously, the integral of Γνρ in eq. (H.4) is obtained from Γµνρ in eq. (H.1) with the
replacement γµ(α+ βγ5) → γ5, that is a replacement of a vector-axial vector coupling
with a pseudoscalar. This validates the Partially Conserved Axial Current (PCAC)
relation in eq. (H.3). Note that Γνρ is finite and independent on the arbitrary vectors
aµ and bµ : Γνρ(k1, k2; a, b) = Γνρ(k1, k2).
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The divergent part Πνρ in the WI of eq. (H.3) contains, among others, the anomalous
term. It is written explicitly as,

Πνρ(k1, k2; a, b) = (−e3)Tr
∫

d4p

(2π)4
×

×
{
−(α− βγ5)(α− βγ5)γρ(/p+ /a+m)γν(α + βγ5)(/p+ /k1 + /a+m)

[(p+ a)2 −m2][(p+ k1 + a)2 −m2]

+
(/p− /k2 + /a+m)γρ(α + βγ5)(/p+ /a+m)γν(α + βγ5)(α + βγ5)

[(p+ a)2 −m2][(p− k2 + a)2 −m2]

− (α− βγ5)(α− βγ5)γν(/p+ b/+m)γρ(α + βγ5)(/p+ /k2 + b/+m)

[(p+ b)2 −m2][(p+ k2 + b)2 −m2]

+
(/p− /k1 + b/+m)γν(α + βγ5)(/p+ b/+m)γρ(α + βγ5)(α + βγ5)

[(p+ b)2 −m2][(p− k1 + b)2 −m2]

}
.

(H.6)

This is an integral that is devided into two parts : a chiral expression i.e., the one that
contains γ5 and a non-chiral expression that does not contain γ5. Since the anomaly
term is originated from the chiral part we start from there. Hence,

Πνρ
chiral(k1, k2; a, b) = (β3 + 3α2β)e3 ×

×Tr

∫
d4p

(2π)4

{ (/p+ /k1 + /a)γρ(/p+ /a)γνγ5

[(p+ k1 + a)2 −m2][(p+ a)2 −m2]
− (/p+ /a)γν(/p− /k2 + /a)γργ5

[(p+ a)2 −m2][(p− k2 + a)2 −m2]

+
(/p+ /k2 + b/)γν(/p+ b/)γργ5

[(p+ k2 + b)2 −m2][(p+ b)2 −m2]
− (/p+ b/)γρ(/p− /k1 + b/)γνγ5

[(p+ b)2 −m2][(p− k1 + b)2 −m2]

}
.

(H.7)

Grouping together the first and the fourth as well as the third and the second terms
in the integrand of eq. (H.7), we arrive at,

Πνρ
chiral(k1, k2; a, b) = (β3 + 3α2β)e3 ×

×
∫

d4p

(2π)4

{
Tr(γκγργλγνγ5)

( (p+ k1 + a)κ(p+ a)λ
[(p+ k1 + a)2 −m2][(p+ a)2 −m2]

−

− (p+ b)κ(p− k1 + b)λ
[(p+ b)2 −m2][(p− k1 + b)2 −m2]

)
+

+Tr(γκγνγλγργ5)
( (p+ k2 + b)κ(p+ b)λ
[(p+ k2 + b)2 −m2][(p+ b)2 −m2]

−

− (p+ a)κ(p− k2 + a)λ
[(p+ a)2 −m2][(p− k2 + a)2 −m2]

)}
. (H.8)

Following the steps described in ref. [157], we first define a function and an integral,

fκλ(p; c, d) =
(p+ c)κ(p+ d)λ

[(p+ c)2 −m2][(p+ d)2 −m2]
, (H.9)
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and

Iκλ(k; c, d) =

∫
d4p

(2π)4

[
fκλ(p+ k; c, d)− fκλ(p; c, d)

]
, (H.10)

where c, d are arbitrary four vectors. By exploiting the following “momentum shift”
integral relation (see the lecture by R. Jackiw in ref. [156] and refs. [126, 127,158])

∫
d4p

(2π)4
[f(p+ a)− f(p)] =

i

(2π)4

[
2π2aµ lim

p→∞
pµp2fo(p) + π2aµaν lim

p→∞
pµp2

∂fe(p)

∂pν

]
,

(H.11)

where only the first term on the r.h.s is relevant to linearly divergent diagrams, and,

fo(p) =
1

2
[f(p)− f(−p)] , fe(p) =

1

2
[f(p) + f(−p)] , (H.12)

are the odd and even parts of f(p) respectively, we obtain,3

Iκλ(k; c, d) =
i

96π2

[
2kλcκ + 2kκdλ − kλdκ − kκcλ − gκλk · (k + c+ d) + kλkκ

]
. (H.13)

Now we have all the necessary machinery to calculate Πνρ in eq. (H.8) by applying to
it eqs. (H.11) and (H.13). For the non-chiral part of Πνρ the choice b = −a results in
Πνρ

non−chiral = 0 as we expect, since there should be no non-chiral anomalies. With this
assignment for vector b we finally obtain for the chiral part:

Πνρ
chiral(k1, k2; a,−a) =

e3(β3 + 3α2β)

4π2
εκνλρaκ(k1 + k2)λ. (H.14)

Plugging in eqs. (H.4) and (H.14) into eq. (H.3), the WI associated to the leg −µ−
becomes:

qµΓ
µνρ(k1, k2; a,−a) = −2meβi

β̃
Γνρ(k1, k2) +

e3(β3 + 3α2β)

4π2
εκνλρ aκ (k1 + k2)λ. (H.15)

Along the same lines we can build in the WIs for the other vertices. For example, the
WI referring to the conservation of current in vertex −ν− (see Fig.3.1) reads:

−k1νΓ̃
νρµ(k1, k2; a,−a) = −2mβei

β̃
Γ̃ρµ(k1, k2)−

e3(β3 + 3α2β)

4π2
εκρλµ (a− k2)κ k1λ. (H.16)

Vertices Γ̃νρµ(k1, k2; a, b) and Γ̃ρµ(k1, k2) are obtained from Γµνρ(k1, k2; a, b) and Γνρ(k1, k2)
in eqs. (H.1) and (H.4), respectively, after the following replacements

µ→ ν, ν → ρ, ρ→ µ, a→ a− k2, b→ b+ k2, k1 → k2,

k2 → −k1 − k2, q = k1 + k2 → k2 − k1 − k2 = −k1 ⇒ q → −k1 . (H.17)

3There is a typographical error in the corresponding expression of a classic textbook written by S.
Weinberg in ref. [157]. We thank Steve Martin and Howie Haber for communication related to this
point.
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It is straightforward to see from eq. (H.17) that the non-chiral part of−k1νΓ̃νρµ(k1, k2; a, b)
vanishes again for the choice b = −a. Similarly the WI for the current conservation in
the −ρ− vertex is:

−k2ρΓ̂
ρµν(k1, k2; a,−a) = −2mβei

β̃
Γ̂µν(k1, k2)−

e3(β3 + 3α2β)

4π2
εκµλν (a+ k1)κ k2λ. (H.18)

As previously, Γ̂ρµν(k1, k2; a, b) and Γ̂µν(k1, k2) can be obtained from eqs. (H.1) and
(H.4) by making the following replacements:

µ→ ρ, ν → µ, ρ→ ν, a→ a+ k1, b→ b− k1, k1 → −k2 − k1,

k2 → k1, q = k1 + k2 → −k2 − k1 + k1 ⇒ q → −k2 . (H.19)

These replacements leave invariant the choice b = −a so that finally, the non-chiral
part of −k2ρΓ̂ρµν(k1, k2; a,−a) vanishes identically everywhere. Furthermore, by direct

calculation the vertices Γ̃ρµ and Γ̂µν are found to be,

Γ̃ρµ(k1, k2) =
ie2mβ̃

2π2
ελµξρ k1λ k2ξ I1(k1, k2,m) , (H.20)

and

Γ̂µν(k1, k2) =
ie2mβ̃

2π2
ελµξν k1λ k2ξ I2(k1, k2,m) , (H.21)

respectively, where the corresponding integrals I1, 2 are written explicitly as,

I1(k1, k2,m) =

∫ 1

0

dx

∫ 1−x

0

dy
−(α2 + β2) + 2xβ2

x(x− 1)k22 + y(y − 1)k21 − 2xyk1 · k2 +m2
, (H.22)

and

I2(k1, k2,m) =

∫ 1

0

dx

∫ 1−x

0

dy
(α2 + β2)− 2yβ2

x(x− 1)k22 + y(y − 1)k21 − 2xyk1 · k2 +m2
. (H.23)

The three-point vertex obeys the following equality,

Γµνρ = Γ̃νρµ = Γ̂ρµν , (H.24)

as the property of trace to remain invariant under cyclic permutations. It is instructive
to write the arbitrary vector aµ, appearing in the WIs, as a linear combination of the
two independent momenta k1 and k2,

aµ = z kµ1 + w kµ2 , (H.25)

with z, w arbitrary real numbers. Then the WIs in eqs. (H.15), (H.16) and (H.18) can
be written explicitly in terms of the three integrals I0, I1, and I2 and the real numbers
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w and z as,

qµΓ
µνρ(k1, k2;w, z) = −e

3βm2

π2
ελνρσ k1λ k2σ I0(k1, k2;m) +

+
e3(β3 + 3α2β)

4π2
ελνρσ k1λ k2σ(w − z) , (H.26)

−k1νΓ̃νρµ(k1, k2;w) = −e
3βm2

π2
ελµρσ k1λ k2σ I1(k1, k2;m) +

+
e3(β3 + 3α2β)

4π2
ελµρσ (w − 1) k1λk2σ , (H.27)

−k2ρΓ̂ρµν(k1, k2; z) = −e
3βm2

π2
ελµνσ k1λ k2σ I2(k1, k2;m) +

+
e3(β3 + 3α2β)

4π2
ελµνσ (z + 1)k1λk2σ . (H.28)

Obviously, even if we choose w = 1 and z = −1 so that the second and third anomalies
vanish, it cannot be done so for the first one. The anomalous term, i.e., the second
term on the r.h.s of eq. (H.26), remains. It is quite interesting to note that in the limit
where k21, k

2
2, k1 · k2 ≪ m → ∞, there is a choice for w = −z = 1/3 such that the

right hand side of eqs. (H.26), (H.27) and (H.28) vanish identically. For this choice the
fermions get decoupled completely.

Our goal is still to calculate the three gauge boson vertex Γµνρ(k1, k2; a,−a). The
idea is to first write down the most general, Lorentz invariant vertex, as:4

Γµνρ(k1, k2; a,−a) =

[
A1(k1, k2; a,−a) εµνρσ k2σ + A2(k1, k2; a,−a) εµνρσ k1σ

+ A3(k1, k2) ε
µρβδ kν2 k1β k2δ + A4(k1, k2) ε

µρβδ kν1 k1β k2δ

+ A5(k1, k2) ε
µνβδ kρ2 k1β k2δ + A6(k1, k2) ε

µνβδ kρ1 k1β k2δ

]
. (H.32)

The form factors A1 and A2 are dimensionless and, by naive power counting, at most
linearly divergent while all the rest, A3, .., A6 possess dimension of m−2 and are finite.

4There are two more terms allowed in the expansion,

A7(k1, k2)ε
ρνβδ kµ2 k1β k2δ +A8(k1, k2)ε

ρνβδ kµ1 k1β k2δ . (H.29)

However, by exploiting the following, very useful, identities

kµ1 ε
ρνβδk1βk2δ = −εµρβδkν1k1βk2δ + εµνβδkρ1k1βk2δ

+ εµνρα[(k1 · k2) k1α − k21 k2α] , (H.30)

kµ2 ε
ρνβδk1βk2δ = −εµρβδkν2k1βk2δ + εµνβδkρ2k1βk2δ

− εµνρα[(k1 · k2) k2α − k22 k1α] , (H.31)

we arrive at the six form factors given in eq. (H.32).
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The latter can be calculated directly in four dimensions from eq. (H.1). We find
explicitly:

A3(k1, k2) = −A6(k1, k2) = −e
3(β3 + 3α2β)

π2

∫ 1

0

dx

∫ 1−x

0

dy
xy

∆
, (H.33)

A4(k1, k2) =
e3(β3 + 3α2β)

π2

∫ 1

0

dx

∫ 1−x

0

dy
y(y − 1)

∆
, (H.34)

A5(k1, k2) = −e
3(β3 + 3α2β)

π2

∫ 1

0

dx

∫ 1−x

0

dy
x(x− 1)

∆
, (H.35)

where the integrand denominator is common for all A3, ..., A6 and reads:

∆ ≡ x(x− 1)k22 + y(y − 1)k21 − 2xyk1 · k2 +m2 . (H.36)

To estimate the two divergent integrals, A1 and A2, we apply the Ward Identities for
the vertices ν and ρ, i.e., eqs. (H.27) and (H.28) in the expansion (H.32) and obtain:

A1(k1, k2;w) = (k1 · k2)A3(k1, k2) + k21 A4(k1, k2)−
m2e3β

π2
I1(k1, k2,m) +

+
e3(β3 + 3α2β)

4π2
(w − 1) , (H.37)

A2(k1, k2; z) = (k1 · k2)A6(k1, k2) + k22 A5(k1, k2)−
m2e3β

π2
I2(k1, k2,m) +

+
e3(β3 + 3α2β)

4π2
(z + 1) . (H.38)

Equations (H.22-H.23,H.33-H.38) complete the evaluation of the vertex Γµνρ(k1, k2, w, z)
in eq. (H.32). In Appendix J we present analytical expressions of the integrals A3,..,6

and I0, 1, 2 in various limits.

Even if the form factors Ai=1...6 had not been calculated explicitly there is much to
say about their structure by exploiting possible Bose symmetries. Hence, referring to
the notation of Fig. 3.1, Bose symmetry among j and k legs implies,

A1(k1, k2) = −A2(k2, k1) , (H.39a)

A3(k1, k2) = −A6(k2, k1) , (H.39b)

A4(k1, k2) = −A5(k2, k1) , (H.39c)
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while in i and j legs,

A1(k1, k2) = −A1(−q, k2) + A2(−q, k2)− (k1 · k2) [(A3(−q, k2)− A4(−q, k2)] +
+ k21A4(−q, k2) , (H.40a)

A2(k1, k2) = A2(−q, k2) + k22 [A3(−q, k2)− A4(−q, k2)]−
− (k1 · k2)A4(−q, k2) , (H.40b)

A3(k1, k2) = A4(−q, k2)− A3(−q, k2) , (H.40c)

A4(k1, k2) = A4(−q, k2) , (H.40d)

A5(k1, k2) = A5(−q, k2)− A6(−q, k2) + A3(−q, k2)− A4(−q, k2) , (H.40e)

A6(k1, k2) = −A4(−q, k2)− A6(−q, k2) , (H.40f)

and, finally, in i and k legs we find,

A1(k1, k2) = A1(k1, − q)− k21 [(A5(k1,−q)− A6(k1,−q)]−
− (k1 · k2)A5(k1,−q) , (H.41a)

A2(k1, k2) = A1(k1,−q)− A2(k1,−q) + (k1 · k2) [A5(k1,−q)− A6(k1,−q)] +
+ k22A5(k1,−q) , (H.41b)

A3(k1, k2) = −A3(k1,−q)− A5(k1,−q) , (H.41c)

A4(k1, k2) = A4(k1,−q)− A3(k1,−q)− A5(k1,−q) + A6(k1,−q) , (H.41d)

A5(k1, k2) = A5(k1,−q) , (H.41e)

A6(k1, k2) = A5(k1,−q)− A6(k1,−q) . (H.41f)

The above relations have been repeatedly used in section 3.4 when determining the
anomaly parameters w and z. We should notice that in addition to relations due
to Bose symmetry, there are few more relations originated solely from the fermionic
triangle:

A3(k1, k2) = A3(k2, k1) , A6(k1, k2) = A6(k2, k1) . (H.42)

We can now exploit Bose symmetry to set constraints on the arbitrary parameters w
and z. For example, if the gauge bosons associated with legs j and k in Fig. 3.1 are
identical, then eq. (H.39) impose the following relation,

w + z = 0 , (H.43)

among the undefined (momentum route dependent) parameters. One last remark is
that we can rediscover Bose symmetries by using one of the following equivalent rep-
resentations (i.e., they leave the double integral measure invariant) of the integrals
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A3, ..., A6 by noting that

∆(k1, k2)
x↔y−−→ ∆(k2, k1) , (H.44)

∆(k1, k2)
y→1−x−y−−−−−−→

x→x
∆(k1,−q) , (H.45)

∆(k1, k2)
y→y−−−−−−→

x→1−x−y
∆(−q, k2) , (H.46)

where ∆(k1, k2) is a function defined in eq. (H.36). As a generalisation of eqs. (H.15),
(H.16) and (H.18) we can proceed to the situation where there are three, in general
different, external gauge bosons with different couplings to fermions. As in (H.1), we
write the general three point vertex in Fig. 3.1 as:

Γµνρ(k1, k2; a, b) = Γ̃νρµ(k1, k2; a, b) = Γ̂ρµν(k1, k2; a, b) = −e3
∫

d4p

(2π)4
×

×
{
Tr

[
γµ(αi + βiγ

5)(/p− /k2 + /a+m)γρ(αj + βjγ
5)(/p+ /a+m)γν(αk + βkγ

5)(/p+ /k1 + /a+m)
]

[(p− k2 + a)2 −m2][(p+ a)2 −m2][(p+ k1 + a)2 −m2]
+

+
Tr

[
γµ(αi + βiγ

5)(/p− /k1 + b/+m)γν(αk + βkγ
5)(/p+ b/+m)γρ(αj + βjγ

5)(/p+ /k2 + b/+m)
]

(p− k1 + b)2 −m2][(p+ b)2 −m2][(p+ k2 + b)2 −m2]

}
,

(H.47)

and the corresponding two point vertex functions as:

Γνρ(k1, k2) =
−ie2mβ̃
2π2

ελνρσk1λk2σ

∫ 1

0

dx

∫ 1−x

0

dy
(αjαk − βjβk) + 2βjβk(x+ y)

∆
,

Γ̃ρµ(k1, k2) =
ie2mβ̃

2π2
ελµξρk1λk2ξ

∫ 1

0

dx

∫ 1−x

0

dy
−(αiαk + βiβk) + 2xβiβk

∆
, (H.48)

Γ̂µν(k1, k2) =
ie2mβ̃

2π2
ελµξνk1λk2ξ

∫ 1

0

dx

∫ 1−x

0

dy
(αiαj + βiβj)− 2yβiβj

∆
,

where as before ∆ ≡ ∆(k1, k2) is given by eq. (H.36). The complete Γµνρ(k1, k2, w, z)
in this general case is presented in section 3.2.
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Appendix I: Charged gauge boson vertex

In this Appendix we present the general three gauge boson vertex that contains charged
gauge bosons (W−, W+) in the external legs. The calculation for V ∗W−W+, V = γ, Z
is slightly more complicated than the one for neutral triple gauge boson vertices for two
reasons: first, the appearance in the loop of two, in general, different fermion masses
and second, the appearance of different V ff vertex for each particle contribution.
Although the first complication leads to only technical difficulties, the latter one is more
serious: it does not allow for an obvious exploitation of the master 4D “momentum
shift” equation (H.11).

Our method for calculating this vertex follows exactly the same steps as described
in detail in Appendix H and in section 3.2. The chiral part of the V ∗WW vertex is
still given by eq. (3.2).

q

k k1 2

i

j k

+

q

2k
k1

j k

=

i

u

d d
d

u u

Figure I.1: The one-loop effective triple gauge boson vertex, Γµνρ
VW−W+ , V = γ, Z. As

in Fig. 3.1, indices {i, j, k} denote distinct external gauge bosons in general.

The finite form factors A3, ..., A6 for the first diagram in Fig. I.1 are exactly the
half of the corresponding ones in eq.(3.8) but with the replacement of ∆(k1, k2) into:

∆(k1, k2; m
2
fu , m

2
fd
) ≡ x(x− 1)k22 + y(y − 1)k21 − 2xyk1 · k2 − (x+ y)∆m2 +m2

fu , (I.1)

with the mass squared difference being ∆m2 ≡ m2
fu
−m2

fd
. Here, fu and fd denote each

of the fermion pair (u, ν) and (d, e) for leptons and quarks, respectively. Obviously,
the contribution of the crossed diagram i.e., the second diagram in Fig. I.1, requires
the replacement, fu ↔ fd. Our calculation here is quite general and is not confined
only in to V ∗WW vertex. For example, it could be used for the vertex VWLWR in an
SU(2)L × SU(2)R × U(1) gauge model.
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As before, the “infinite” form factors, A1, 2 are fixed by the Ward Identities. The
calculation of the first diagram of Fig. I.1 results in,

A1(k1, k2) = (k1 · k2)A3 + k21A4 −
αj(mfu −mfd)

4π2
I11(m

2
fu ,m

2
fd
)−

− βj(mfu +mfd)

4π2
I12(m

2
fu ,m

2
fd
) +

c

8π2
(w − 1) , (I.2a)

A2(k1, k2) = (k1 · k2)A6 + k22A5 +
αk(mfu −mfd)

4π2
I21(m

2
fu ,m

2
fd
)−

− βk(mfu +mfd)

4π2
I22(m

2
fu ,m

2
fd
) +

c

8π2
(z + 1) , (I.2b)

where c ≡ (αiαj + βiβj)βk + (αiβj + αjβi)αk is the usual anomaly factor. Again,
the result depends upon two arbitrary four vectors, aµ and bµ, that parameterize the
momentum routing in the loop. For chiral gauge anomalies to cancel after summing
over all fermions, the arbitrary vectors a and b need to be set at a = −b. As before, we
write aµ as a linear combination of independent four vectors aµ = zkµ1 +wk

µ
2 , with z, w

arbitrary real parameters. This includes γ, Z, W -self energy corrections. The latter
depend on their own routing momenta arbitrary vectors that can be taken as such in
order to eliminate their anomalous contributions. One then expects that this relation
renders the non-chiral part independent of a as it does for the neutral vertices V V V ,
for V = γ, Z (see Appendix H). However, for VWW -vertices there are additional
contributions to the non-chiral part of Γµνρ from Z, γ, W -self energy corrections that
depend on routing momentum arbitrary vectors. When all these corrections are added,
one expects the result to be independent on these arbitrary vectors.

Then the “non-decoupling” integrals, Iij ≡ Iij(m
2
fu
,m2

fd
) with i, j = 1, 2 appearing

in eq. (I.2) are given by:

I11 =

∫ 1

0

dx

∫ 1−x

0

dy
1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αiβk + αkβi)mfd y

+ (αiβk + αkβi)mfu (x+ y − 1) + (αiβk − αkβi)mfd x
]
, (I.3a)

I12 =

∫ 1

0

dx

∫ 1−x

0

dy
1

∆(k1, k2;m2
fu
,m2

fd
)

[
− (αiαk + βiβk)mfd y

+ (αiαk + βiβk)mfu (x+ y − 1)− (αiαk − βiβk)mfd x
]
, (I.3b)

I21 =

∫ 1

0

dx

∫ 1−x

0

dy
1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αiβj − αjβi)mfd y

+ (αiβj + αjβi)mfu (x+ y − 1) + (αiβj + αjβi)mfd x
]
, (I.3c)

I22 =

∫ 1

0

dx

∫ 1−x

0

dy
1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αiαj − βiβj)mfd y

− (αiαj + βiβj)mfu (x+ y − 1) + (αiαj + βiβj)mfd x
]
, (I.3d)
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where αi ≡ αfd , βi ≡ βfd ,..etc, follow the first diagram of Fig. I.1. The corresponding
expressions for the crossed diagram are easily obtained from those in eqs. (I.2) and
(I.3) with the replacement fu ↔ fd. Note that CP-invariance is maintained since
A1(k1, k2) = −A2(k2, k1).

For reasons we explained at the beginning of this Appendix, finding the anomalous
terms i.e., the last terms in eq. (I.2), is not a straightforward task. The trick here is
to add a Lorentz invariant but vanishing integral that generates exactly the anomaly
integrals by momentum shift. It is then straightforward to use the 4-D expression
(H.11).

To complete our analysis for the chiral fermionic triangle with general external
charged and neutral gauge bosons, we append here the relevant WI’s analogous to
those presented in eq. (3.3) for neutral external gauge bosons:

qµ Γ
µνρ(k1, k2) = − βi

2π2
mfdǫ

νρλσ k1λk2σ I01(m
2
fu ,m

2
fd
) +

c

8π2
ǫνρλσ k1λk2σ (w − z) ,

(I.4a)

−k1ν Γµνρ(k1, k2) = − αj

4π2
(mfu −mfd) ǫ

µρλσ k1λk2σ I11(m
2
fu ,m

2
fd
)−

− βj
4π2

(mfu +mfd) ǫ
µρλσ k1λk2σ I12(m

2
fu ,m

2
fd
)+

+
c

8π2
ǫµρλσ k1λk2σ (w − 1) , (I.4b)

−k2ρ Γµνρ(k1, k2) =
αk

4π2
(mfu −mfd) ǫ

µνλσ k1λk2σ I21(m
2
fu ,m

2
fd
)−

− βk
4π2

(mfu +mfd) ǫ
µνλσ k1λk2σ I22(m

2
fu ,m

2
fd
)+

+
c

8π2
ǫµνλσ k1λk2σ (z + 1) . (I.4c)

Again, the corresponding expressions for the crossed diagram in Fig. I.1 are obtained
from eq. (I.4) after the replacement fu ↔ fd. The integral I01 ≡ I01(m

2
fu
,m2

fd
) is given

by:

I01 =

∫ 1

0

dx

∫ 1−x

0

dy
1

∆(k1, k2;m2
fu
,m2

fd
)

[
(αjαk + βjβk)mfd y −

−(αjαk − βjβk)mfu (x+ y − 1) + (αjαk + βjβk)mfd x
]
. (I.5)

As an extra check, note that in the limit of equal masses m2
fu

= m2
fd
, all the integral

expressions in eq. (I.3) and eq. (I.5) reduce to the corresponding ones in eqs. (3.4),
(3.5) and (3.8) for the neutral gauge boson vertex.
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Appendix J: Useful integral expressions

In this Appendix we present analytical expressions for integrals related to A3,..,6, and,
I1, 2 in the limit k21, k

2
2 → 0 as well as their approximate expressions in various limits.

We make an effort to write the latter in terms of standard functions i.e., not diloga-
rithms, which are easy to handle both symbolically and numerically. We start out with
integrals related to eq. (3.8),

Ã3(ξ) =

∫ 1

0

dx

∫ 1−x

0

dy
xy

xy − ξ/4
=

1

2
[1 + ξJ(ξ)] , (J.1)

where ξ ≡ 4m2

s
, m is the loop fermion mass, and s = (k1 + k2)

2, while,

J(ξ) = − arctan2

(
1√
ξ − 1

)
, ξ ≥ 1 , (J.2a)

=
1

4

[
ln

(
1−

√
1− ξ

1 +
√
1− ξ

)
− iπ

]2
, ξ ≤ 1 . (J.2b)

This integral has also been calculated in ref. [138] and we find agreement. In the same
limit the integral related to A4 and A5 is:

Ã4(ξ) = Ã5(ξ) =

∫ 1

0

dx

∫ 1−x

0

dy
x(x− 1)

xy − ξ/4
=

∫ 1

0

dx

∫ 1−x

0

dy
y(y − 1)

xy − ξ/4
, (J.3)

with its exact answer written like

Ã4(ξ) = 1−
√
ξ − 1 arctan

(
1√
ξ − 1

)
, ξ ≥ 1 , (J.4)

= 1 +

√
1− ξ

2

[
ln

(
1−

√
1− ξ

1 +
√
1− ξ

)
− iπ

]
, ξ ≤ 1. (J.5)

Integrals that are related to I1 and I2 of eq. (3.5) are:

Ĩ1(ξ) =

∫ 1

0

dx

∫ 1−x

0

dy
1

xy − ξ/4
(J.6)

= −2 arctan2

(
1√
ξ − 1

)
, ξ ≥ 1 (J.7)

=
1

2

[
ln

(
1−

√
1− ξ

1 +
√
1− ξ

)
− iπ

]2
, ξ ≤ 1 , (J.8)



138

and

Ĩ ′1(ξ) =

∫ 1

0

dx

∫ 1−x

0

dy
x

xy − ξ/4
=

∫ 1

0

dx

∫ 1−x

0

dy
y

xy − ξ/4
(J.9)

= 2

[√
ξ − 1 arctan

(
1√
ξ − 1

)
− 1

]
, ξ ≥ 1 (J.10)

= −2−
√

1− ξ

[
ln

(
1−

√
1− ξ

1 +
√
1− ξ

)
− iπ

]
, ξ ≤ 1 . (J.11)

These integrals are related A3, .., A6, I1,2, and in the limit m2
Z ≪ s < m2, become:

A3(s;m
2) = −A6(s;m

2) =
c

s
Ã3(

4m2

s
) = − c

m2

[
1

24
+

1

180

s

m2
+O(s2/m4)

]
, (J.12a)

A4(s;m
2) = −A5(s;m

2) = −c
s
Ã4(

4m2

s
) = − c

m2

[
1

12
+

1

120

s

m2
+O(s2/m4)

]
,

(J.12b)

I1(s;m
2) =

αiαk + βiβk
s

Ĩ1(
4m2

s
)− 2βiβk

s
Ĩ ′1(

4m2

s
)

= − 1

m2

[
βiβk + 3αiαk

6
+
βiβk + 5αiαk

120

s

m2
+O(s2/m4)

]
, (J.12c)

I2(s;m
2) = −αiαj + βiβj

s
Ĩ1(

4m2

s
) +

2βiβj
s

Ĩ ′1(
4m2

s
)

=
1

m2

[
βiβj + 3αiαj

6
+
βiβj + 5αiαj

120

s

m2
+O(s2/m4)

]
, (J.12d)

where c =
e3[(αiαj+βiβj)βk+(αiβj+βiαj)αk]

π2 is the anomaly factor.
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These expressions are in agreement with the corresponding ones presented in ref. [89].
In the high energy limit m2 ≪ s, we obtain:

A3(s;m
2) = −A6(s;m

2) ≃ c

{
1

2s
+
m2

2s2

[
ln2 s

m2
− π2

]
+ iπ

m2

s2
ln

s

m2
+O(m4/s3)

}
,

(J.13a)

A4(s;m
2) = −A5(s;m

2)

≃ c

{
1

s

[
−1 +

1

2
ln

s

m2

]
− m2

s2

[
ln

s

m2
+ 1

]
+ iπ

[
1

2s
− m2

s2

]
+O(m4/s3)

}
,

(J.13b)

I1(s;m
2) ≃ (αiαk + βiβk)

s

[
1

2

(
ln2 s

m2
− π2

)
− 2

m2

s
ln

s

m2

]
−

− 2βiβk
s

[
ln

s

m2
− 2− 2m2

s

(
ln

s

m2
+ 1

)]

+ iπ

{
(αiαk + βiβk)

s

[
ln

s

m2
− 2m2

s

]
− 2βiβk

s

[
1− 2m2

s

]}
+O(m4/s3) ,

(J.13c)

I2(s;m
2) ≃− (αiαj + βiβj)

s

[
1

2

(
ln2 s

m2
− π2

)
− 2

m2

s
ln

s

m2

]
+

+
2βiβj
s

[
ln

s

m2
− 2− 2m2

s

(
ln

s

m2
+ 1

)]
−

− iπ

{
(αiαj + βiβj)

s

[
ln

s

m2
− 2m2

s

]
− 2βiβj

s

[
1− 2m2

s

]}
+O(m4/s3).

(J.13d)

Only the real parts of these expressions have been presented in ref. [89] and we find
agreement5. Other useful identities among A’s that have been used in our numerical
code for calculating the V ∗ZZ-vertex are,

(A3 −A4)(k1 = mZ , k2 = mZ , s;m = 0) =
s A3(k1 = mZ , k2 = mZ , s;m = 0)

2m2
Z

− 1

4m2
Z

(J.14)

and for the V ∗γZ-vertex,

A3(k1 = 0, k2 = mZ , s;m = 0) =
1

2(s−m2
Z)

− m2
Z

2(s−m2
Z)

2
ln

(
s

m2
Z

)
, (J.15)

A5(k1 = 0, k2 = mZ , s;m = 0) = − 1

2(s−m2
Z)

ln

(
s

m2
Z

)
. (J.16)

5For notational matter, our integrals are related to those in ref. [89] like A3 = −c6,
A4 = 1

2
(c4 − c3 − 2 c6), where for example A3 ≡ A3(k

2
1 = k22 = m2

W , s,m2
fu
,m2

fd
),...etc.
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Finally, we derive full analytical expressions in the case k21 = 0, where one of the
external gauge bosons is massless e.g., the V ∗γZ-vertex. To this end it is useful to
define an auxiliary function,

F (mZ , s,m) ≡
∫ 1

0

dx

∫ 1−x

0

dy ln[x(x− 1)m2
Z − xy(s−m2

Z) +m2] , (J.17)

out of which we read A3, .., A6, I1, 2 by simply taking appropriate derivatives w.r.t
s, k22 = m2

Z or m2. Depending on the region of parameters s, m2, m2
Z we have found

the function F to be,

F (mZ , s,m) = −3

2
+

ln(m2)

2
−

(
1

m2
Z − s

){
s

√
4m2

s
− 1 arctan

(
1√

4m2

s
− 1

)

+ 2m2

[
arctan2

(
1√

4m2

s
− 1

)
− arctan2

(
1√

4m2

m2
Z

− 1

)]
−

− m2
Z

√
4m2

m2
Z

− 1 arctan

(
1√

4m2

m2
Z

− 1

)}
,

4m2

s
> 1,

4m2

m2
Z

> 1,

(J.18)

F (mZ , s,m) = −3

2
+

ln(m2)

2
−

(
1

m2
Z − s

){
s

√
4m2

s
− 1 arctan

(
1√

4m2

s
− 1

)
+

+ m2

[
2 arctan2

(
1√

4m2

s
− 1

)
+

1

2

(
ln(

1−
√
1− 4m2

m2
Z

1 +
√

1− 4m2

m2
Z

) + iπ

)2]
+

+ m2
Z

[
1

2

√
1− 4m2

m2
Z

(
ln(

1−
√

1− 4m2

m2
Z

1 +
√
1− 4m2

m2
Z

)− iπ

)]}
,
4m2

s
> 1,

4m2

m2
Z

< 1 ,

(J.19)

F (mZ , s,m) = −3

2
+

ln(m2)

2
+

+

(
1

m2
Z − s

){
s

[
1

2

√
1− 4m2

s

(
ln(

1−
√
1− 4m2

s

1 +
√

1− 4m2

s

)− iπ

)]

+ m2

[
2 arctan2

(
1√

4m2

m2
Z

− 1

)
+

1

2

(
ln(

1−
√
1− 4m2

s

1 +
√
1− 4m2

s

)− iπ

)2]
+

+ m2
Z

[√
4m2

m2
Z

− 1 arctan

(
1√

4m2

m2
Z

− 1

)]}
,

4m2

s
< 1,

4m2

m2
Z

> 1 ,

(J.20)
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F (mZ , s,m) = −3

2
+

ln(m2)

2
+

+

(
1

m2
Z − s

){
s

[
1

2

√
1− 4m2

s

(
ln(

1−
√
1− 4m2

s

1 +
√
1− 4m2

s

)− iπ

)]

+ m2

[
1

2

(
ln(

1−
√

1− 4m2

s

1 +
√

1− 4m2

s

)± iπ

)2

− 1

2

(
ln(

1−
√
1− 4m2

m2
Z

1 +
√

1− 4m2

m2
Z

)± iπ

)2]

− m2
Z

[
1

2

√
1− 4m2

m2
Z

(
ln(

1−
√

1− 4m2

m2
Z

1 +
√
1− 4m2

m2
Z

)− iπ

)]}
,
4m2

s
< 1,

4m2

m2
Z

< 1

(J.21)

In eq. (J.21), the plus sign corresponds to s < m2
Z while the minus sign to s > m2

Z .
As an example the full analytical expressions for A3 and A5 can be obtained by taking
appropriate derivatives of function F like, A3 = c ∂F

∂s
and A5 = −c (∂F

∂s
+ ∂F

∂m2
Z

), where,

as above, c is a factor related to the couplings in the corresponding vertex. As a cross
check, taking the limit m→ 0 in eq. (J.21) we arrive at,

F (mZ , s, 0) = −3

2
− 1

2(m2
Z − s)

[
s ln(s)−m2

Z ln(m2
Z)

]
+
iπ

2
. (J.22)

Differentiating w.r.t s and m2
Z we reproduce the expressions in eqs. (J.15) and (J.16).
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Appendix K: Non-decoupling conditions

In this Appendix we present necessary conditions for anomaly cancellation and non-
decoupling heavy fermion effects in a model with three different U(1)’s corresponding
to three distinct, massive or massless gauge bosons X, Y and Z. For this model to be
anomaly free, the following conditions among couplings must hold [see eq. (3.1)]:

n∑

i=1

(β3
X + 3α2

XβX)i =
n∑

i=1

(β3
Y + 3α2

Y βY )i =
n∑

i=1

(β3
Z + 3α2

ZβZ)i = 0 ,

n∑

i=1

(β2
XβY + 2αXαY βX + α2

XβY )i =
n∑

i=1

(β2
XβZ + 2αXαZβX + α2

XβZ)i = 0 ,

n∑

i=1

(β2
Y βX + 2αXαY βY + α2

Y βX)i =
n∑

i=1

(β2
Y βZ + 2αZαY βY + α2

Y βZ)i = 0 ,

n∑

i=1

(β2
ZβX + 2αXαZβZ + α2

ZβX)i =
n∑

i=1

(β2
ZβY + 2αZαY βZ + α2

ZβY )i = 0 ,

n∑

i=1

(βXβY βZ + αXαZβY + αXαY βZ + αZαY βX)i = 0 . (K.1)

Non-decoupling effects in XY Z-vertex are activated if, in addition to the requirements
in eq. (K.1), at least one of the following expressions is non-zero:

n∑

i=1

(β2
XβY + 3 α2

XβY )i ,
n∑

i=1

(β2
XβY + 3 αXαY βX)i ,

n∑

i=1

(β2
XβZ + 3 αXαZβX)i ,

n∑

i=1

(β2
XβZ + 3 α2

XβZ)i ,
n∑

i=1

(β2
Y βX + 3 αXαY βY )i ,

n∑

i=1

(β2
Y βX + 3 α2

Y βX)i ,

n∑

i=1

(β2
Y βZ + 3 α2

Y βZ)i ,
n∑

i=1

(β2
Y βZ + 3 αY αZβY )i ,

n∑

i=1

(β2
ZβX + 3 αXαZβZ)i ,

n∑

i=1

(β2
ZβX + 3 α2

ZβX)i ,
n∑

i=1

(β2
ZβY + 3 αY αZβZ)i ,

n∑

i=1

(β2
ZβY + 3 α2

ZβY )i ,

n∑

i=1

(βXβY βZ + 3 αXαZβY )i ,
n∑

i=1

(βXβY βZ + 3 αXαY βZ)i ,

n∑

i=1

(βXβY βZ + 3αY αZβX)i . (K.2)
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Appendix L: Form factors for H → γγ

We append here the integrand expressions for the coefficients Aij in eq. (4.3).

A11 = 1
[(p+a)2−m2

W ][(p+a−k1)2−m2
W ][(p+a−k1−k2)2−m2

W ]
×

×
{
m2

W

[
2 (p+ a) · (p+ a)− 3 (p+ a) · k1 − (p+ a) · k2 − 2m2

H

]
−

−
[
3 [(p+ a) · (p+ a)]2 − 10 [(p+ a) · k1][(p+ a) · (p+ a)]−

−2 [(p+ a) · k2][(p+ a) · (p+ a)] + 8 [(p+ a) · k1]2 +

+2m2
H [(p+ a) · (p+ a)]− 2m2

H [(p+ a) · k1]
]
+

+ 1
m2

W

[
[(p+ a) · (p+ a)]3 − 5 [(p+ a) · k1][(p+ a) · (p+ a)]2 +

+8 [(p+ a) · k1]2[(p+ a) · (p+ a)]− 4 [(p+ a) · k1]3 −

−[(p+ a) · k2]
(
[(p+ a) · (p+ a)]2 + 4 [(p+ a) · k1]2 +

−4 [(p+ a) · k1][(p+ a) · (p+ a)]2
)]}

+

+ 1
[(p+b)2−m2

W ][(p+b−k2)2−m2
W ][(p+b−k1−k2)2−m2

W ]
×

×
{
m2

W

[
2 [(p+ b) · (p+ b)]− 3 (p+ b) · k2 − (p+ b) · k1 − 2m2

H

]
−

−
[
3 [(p+ b) · (p+ b)]2 − 10 [(p+ b) · k2][(p+ b) · (p+ b)]−

−2 [(p+ b) · k1][(p+ b) · (p+ b)] + 8 [(p+ b) · k2]2 +

+2m2
H [(p+ b) · (p+ b)]− 2m2

H [(p+ b) · k2]
]
+

+ 1
m2

W

[
[(p+ b) · (p+ b)]3 − 5 [(p+ b) · k2][(p+ b) · (p+ b)]2 +

+8 [(p+ b) · k2]2[(p+ b) · (p+ b)]− 4 [(p+ b) · k2]3 −

−[(p+ b) · k1]
(
[(p+ b) · (p+ b)]2 + 4 [(p+ b) · k2]2

−4 [(p+ b) · k2][(p+ b) · (p+ b)]2
)]}

−

− 2
[(p+c)2−m2

W ][(p+c−k1−k2)2−m2
W ]

×

×
{
m2

W (d− 1)− 2

[
[(p+ c) · (p+ c)]− [(p+ c) · k1]− [(p+ c) · k2] + m2

H

2

]
+

+ 1
m2

W

[
[(p+ c) · (p+ c)]2 − 2 [(p+ c) · (p+ c)] [(p+ c) · k1]−

−2 [(p+ c) · k2]
(
[(p+ c) · (p+ c)]− [(p+ c) · k1]

)
+ [(p+ c) · k1]2 + [(p+ c) · k2]2

]}
(L.1)
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A21 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]

×

×
{
(4 d− 6)m2

W +

[
3 (p+ a) · (p+ a)− 5 (p+ a) · k1 − (p+ a) · k2 + 2 m2

H

]
+

+
1

m2
W

[
− [(p+ a) · (p+ a)]2 + 3 [(p+ a) · k1][(p+ a) · (p+ a)]− 2 [(p+ a) · k1]2 −

−2 [(p+ a) · k1][(p+ a) · k2] + [(p+ a) · (p+ a)][(p+ a) · k2]
]}

, (L.2)

A22 =
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]

×

×
{
(4 d− 6)m2

W +

[
3 (p+ b) · (p+ b)− 5 (p+ b) · k2 − (p+ b) · k1 + 2 m2

H

]
+

+
1

m2
W

[
− [(p+ b) · (p+ b)]2 + 3 [(p+ b) · k2][(p+ b) · (p+ b)]− 2 [(p+ b) · k2]2 −

−2 [(p+ b) · k1][(p+ a) · k2] + [(p+ b) · (p+ b)][(p+ b) · k1]
]}

, (L.3)

A23 =
−1

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
×

×
{
4 +

2

m2
W

[
− [(p+ c) · (p+ c)] + (p+ c) · k1 + (p+ c) · k2

]}
, (L.4)

A31 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]

×

×
{
(7− 4 d)m2

W −
[
4 (p+ a) · (p+ a)− 7 (p+ a) · k1 + 3 (p+ a) · k2

]
+

+
1

m2
W

[
[(p+ a) · (p+ a)]2 − 3 [(p+ a) · k1][(p+ a) · (p+ a)] + 2 [(p+ a) · k1]2 +

+2 [(p+ a) · k1][(p+ a) · k2]− [(p+ a) · (p+ a)][(p+ a) · k2]
]}

, (L.5)

A32 =
−1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]

×

×
{
m2

W +

[
− (p+ b) · (p+ b) + 6 (p+ b) · k2

]}
, (L.6)
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A33 =
1

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
×

×
{
2− 1

m2
W

[
(p+ c) · (p+ c)− (p+ c) · k1 − (p+ c) · k2

]}
, (L.7)

A41 =
−1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]

×

×
{
m2

W +

[
− (p+ a) · (p+ a) + 6 (p+ a) · k1

]}
, (L.8)

A42 =
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]

×

×
{
(7− 4 d)m2

W −
[
4 (p+ b) · (p+ b)− 7 (p+ b) · k2 + 3 (p+ b) · k1

]
+

+
1

m2
W

[
[(p+ b) · (p+ b)]2 − 3 [(p+ b) · k2][(p+ b) · (p+ b)] + 2 [(p+ b) · k2]2 +

+2 [(p+ b) · k1][(p+ b) · k2]− [(p+ b) · (p+ b)][(p+ b) · k1]
]}

, (L.9)

A43 = A33 , (L.10)

A51 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]

×

×
{
5m2

W +

[
3 (p+ a) · (p+ a)− 2 (p+ a) · k1

]}
+

+
1

[(p+ b)2 −m2
W ][(p+ b− k2)2 −m2

W ][(p+ b− k1 − k2)2 −m2
W ]

×

×
{
5m2

W +

[
3 (p+ b) · (p+ b)− 2 (p+ b) · k2

]}
−

− 2

[(p+ c)2 −m2
W ][(p+ c− k1 − k2)2 −m2

W ]
. (L.11)

Note that the number of dimensions d has been kept arbitrary throughout and on-
shell conditions for the external particles have been imposed. It is straightforward, but
long and tedious, to show that after implementing the condition (4.7) to coefficients in
eqs.(L.2-L.10), we arrive at eq. (4.8) which is at the most logarithmically divergent.
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For complementarity reasons, it is useful in deriving eq. (4.24) to present the ex-
pression for the coefficient A11 after the imposition of the arbitrary vector relation
eq. (4.7).

A11 =
1

[(p+ a)2 −m2
W ][(p+ a− k1)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]

×

×
{(

(p+ a− k1)
2 −m2

W

)
(1− d)m2

W +

+4 [(p+ a) · k1][(p+ a) · k2]− [3m2
W + (p+ a)2]m2

H

}
+

+
1

[(p+ a)2 −m2
W ][(p+ a− k2)2 −m2

W ][(p+ a− k1 − k2)2 −m2
W ]

×

×
{(

(p+ a− k2)
2 −m2

W

)
(1− d)m2

W +

+4 [(p+ a) · k1][(p+ a) · k2]− [3m2
W + (p+ a)2]m2

H

}
. (L.12)

This integrand expression, under
∫
d4p, is obviously at the most logarithmically diver-

gent.
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Appendix M: 4-dimensional surface integral

In this Appendix we would like to examine the surface terms arising in d = 4 when
calculating the integral on the l.h.s of eq. (4.12). This integral after Wick rotation into
Euclidean space, reads:

i

∫
d2ωℓ

ℓ2 gµν − 4 ℓµ ℓν
(ℓ2 +∆)3

, (M.1)

where ℓ ≡ ℓE, and drop for clarity the subscript E from now on. We follow very
closely ’t Hooft and Veltman’s seminal paper in ref. [33]. In our calculation for a
physical process we should notice first that ℓµ, ℓν are strictly 4-vectors since they are
contracted with physical external momenta kµ1, 2 or kν1, 2. On the other hand, the loop
momentum ℓ in ℓ2 has components in all, d = 2ω, dimensions. We write ℓ as a sum
of a vector ℓ‖ which has non-zero components in dimensions 0, 1, 2, 3 and a vector ℓ⊥
which has nonzero components in (2ω − 4)-dimensions,

ℓ = ℓ‖ + ℓ⊥ . (M.2)

With this definition, the integral (M.1) reduces to

i

∫
d2ωℓ

ℓ2⊥ gµν
(ℓ2 +∆)3

, (M.3)

where the ℓ‖ components in the numerator of (M.1) vanish thanks to symmetric inte-
gration formula, ℓµ‖ℓ

ν
‖ → 1

4
ℓ2‖g

µν . In order not to carry the gµν in all formulae below we
just concentrate on the integral

I ≡ i

∫
d2ωℓ

ℓ2⊥
(ℓ2 +∆)3

= i

∫
d4ℓ‖

∫
d2ω−4ℓ⊥

ℓ2⊥
(ℓ2‖ + ℓ2⊥ +∆)3

. (M.4)

Integrating over the extra dimensional solid angle dΩ2ω−4 we arrive at:

I =
2 i πω−2

Γ(ω − 2)

∫
d4ℓ‖

∫ ∞

0

dL
L2ω−3

(ℓ2‖ + L2 +∆)3
, (M.5)

where Γ(x) is the Euler Γ-function and L is the length of the ℓ⊥ vector. This integral
is UV divergent for ω ≥ 2 and IR divergent for ω ≤ 1. Therefore, the region of
convergence, 1 < ω < 2, is finite but it does not yet include the point ω = 2. In order
to enlarge the region of convergence to include ω = 2, one has to analytically continue
I by inserting the identity,

1 =
1

5

(
∂ℓ‖µ
∂ℓ‖µ

+
∂L

∂L

)
, (M.6)

in (M.5). After integrating by parts in the region of convergence, rewriting the r.h.s in
terms of I from eq. (M.5) and keeping only, potentially, non-vanishing surface terms,
we arrive at:

I =
i πω−2 Γ(4− ω)

4

∮
d3Sµ ℓ‖µ

(ℓ2‖ +∆)4−ω
− 6 i πω−2∆

Γ(ω − 1)

∫
d4ℓ‖

∫ ∞

0

dL
L2ω−3

(ℓ2‖ + L2 +∆)4
,

(M.7)
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where the first integral is over the Euclidean spatial components of a 4-vector on a three-
sphere. The surface integral converges in 1 < ω < 2, while the other in 1 < ω < 3. By
taking the surface integral on a three-sphere with radius R and eventually taking the
limit R → ∞ we find:

∮
d3Sµ ℓ‖µ

(ℓ2‖ +∆)4−ω
= 2π2 lim

R→∞
R2ω−4 , (M.8)

which now converges in the region ω ≤ 2, that is, it includes the point ω = 2. For
ω < 2 this surface term vanishes, while for ω = 2 there is a finite piece, 2π2, remaining.
This is exactly the term that spoils gauge invariance and the equivalence theorem. In
DR this term is axiomatically absent - the shifting of integral momenta is among DR’s
main properties.

Turning into the second integral of eq. (M.7) we note first that the region of con-
vergence includes now ω = 2. It gives,

∫
d4ℓ‖

∫ ∞

0

dL
L2ω−3

(ℓ2‖ + L2 +∆)4
=

π2

12

Γ(ω − 1)Γ(3− ω)

∆3−ω
. (M.9)

By placing eqs. (M.8) and (M.9) into eq. (M.7) we finally arrive at eq. (4.12).
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Appendix N: Generalised Gordon identities

In this last Appendix, we present a set of generalised Gordon identities that are helpful
in simplifying matrix element calculations. For fermions with four-momenta p′ and p
and masses m1 and m2 respectively, the equation of motion is:

u(p′)/p′ = m1u(p
′), u(p)/p = m2u(p), /p

′u(p′) = m1u(p
′), /p u(p) = m2u(p). (N.1)

Let write the expression u(p′)γµu(p) in the following form:

u(p′)γµu(p) = u(p′)

[
Ap′µ +B pµ + i C σµνp′ν + iD σµνpν

]
u(p), (N.2)

where A,B,C,D are coefficients to be determined later and σµν = i
2

(
γµγν − γνγµ

)
.

For the term u(p′)σµν p′νu(p) we find:

u(p′)σµν p′νu(p) =
i

2
u(p′)

(
γµγν − γνγµ

)
p′νu(p) =

i

2
u(p′)

(
2gµν − 2γνγµ

)
p′νu(p) =

=
i

2
u(p′)

(
2p′µ − 2/p′γµ

)
u(p) = iu(p′)p′µu(p)− im1u(p

′)γµu(p), (N.3)

where we used the fact that {γµ, γν} = 2 gµν , and the equations of motion from
eq. (N.1). In a similar way we find:

u(p′)σµν pνu(p) = −iu(p′)pµu(p) + im2u(p
′)γµu(p). (N.4)

Making use of eqs. (N.2), (N.3) and (N.4) we obtain:

u(p′)γµu(p) = u(p′)

[
(A− C) p′µ + (B +D) pµ + (C m1 −Dm2)γ

µ

]
u(p) (N.5)

In order the equation above be satisfied, it must be A − C = 0, B + D = 0 and
C m1 −Dm2 = 1. There are four unknown parameters and three equations, therefore
there is an infinity of solutions of the system above. If we choose C = −D, then
A = B = C = −D = −1

m1+m2
. However if we choose C = D, then A = −B = C = D =

1
m1−m2

. In the last case it must be m1 6= m2. With the choices above we obtain the
following vectorial Gordon identities:

u(p′)γµu(p) = u(p′)

[
p′µ + pµ

m1 +m2

+
i σµν(p′ − p)ν
m1 +m2

]
u(p),

or

u(p′)γµu(p) = u(p′)

[
p′µ − pµ

m1 −m2

+
i σµν(p′ + p)ν
m1 −m2

]
u(p), (N.6)

respectively with m1 6= m2 in the last expression.
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We can use the same procedure to obtain the axial Gordon identities. Let write
now the expression u(p′)γµγ5u(p) in the following form:

u(p′)γµγ5u(p) = u(p′)

[
Ap′µγ5 +B pµγ5 + i Cσµν γ5 p′ν + iD σµν γ5 pν

]
u(p). (N.7)

Analyzing the third and fourth term of the expression above we find the two following
expressions:

u(p′) σµν γ5 p′νu(p) = i u(p′)p′µ γ5 u(p)− im1 u(p
′)γµγ5u(p),

u(p′) σµν γ5 pνu(p) = −i u(p′)pµ γ5 u(p)− im2 u(p
′)γµγ5u(p), (N.8)

where as previously we used the equations of motion and the fact that {γµ, γν} = 2 gµν

and {γµ, γ5} = 0. After substituting these expressions in eq. (N.7), this takes the form:

u(p′)γµγ5u(p) = u(p′)

[
(A− C) p′µγ5 + (B +D) pµγ5 + (C m1 +Dm2)γ

µγ5
]
u(p). (N.9)

As in the previous case we obtain the following system A − C = 0, B + D = 0 and
C m1 + Dm2 = 1. There is an infinity of solutions for this system. If we choose
C = D, then A = −B = C = D = 1

m1+m2
, however if we choose C = −D, then

A = B = C = −D = 1
m1−m2

. As previously in the last case m1 6= m2. Finally, for
these two cases the axial Gordon identities are written as:

u(p′)γµ γ5u(p) = u(p′)

[
p′µ − pµ

m1 +m2

+
i σµν(p′ + p)ν
m1 +m2

]
γ5u(p),

or

u(p′)γµ γ5u(p) = u(p′)

[
p′µ + pµ

m1 −m2

+
i σµν(p′ − p)ν
m1 −m2

]
γ5u(p). (N.10)
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