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“Theoretical physics research is like music. It can be beautiful but also chaotic. It takes (a lot of) time to
master the theoretical background and creativity to construct something new and original. The end result can
be a matter of taste, but if the foundations are sound (pun intended) it will likely reach the eyes/ears of a large
audience and make an impact on society.”





Abstract

In this thesis, we investigate the phenomenology and cosmological conse-
quences of classically scale-invariant Standard Model extensions. We ex-
plore how models with classical scale invariance, where all mass scales
are dynamically generated, can address various contemporary high-energy
physics problems without destabilizing the Higgs mass. The vacuum stabil-
ity, dark matter and neutrino mass problems are simultaneously addressed
in an SU(2)X extension. We also explore an SU(3)X extension due to its rich
phenomenology regarding dark matter. Finally, we address the dynamical
generation of the Planck scale in conjunction with the theory of cosmic in-
flation and study various aspects pertaining to the inflationary observables.





ΠΕΡΙΛΗΨΗ 

 

Μια συναρπαστική εποχή βρίσκεται σε εξέλιξη για τη Φυσική Υψηλών Ενεργειών και 
την Κοσμολογία. Η πρόσφατη ανακάλυψη του μποζονίου Higgs από τον επιταχυντή 
LHC στο CERN και η παρατήρηση βαρυτικών κυμάτων που προήλθαν από 
συγχωνευόμενες μελανές οπές από τον ανιχνευτή LIGO, έχουν επιβεβαιώσει ξανά 

τους μακρόχρονους ακρογωνιαίους λίθους της κατανόησής μας για τη Φυσική του 
Σύμπαντος, ήτοι, το Καθιερωμένο Πρότυπο (SM) των στοιχειωδών σωματιδίων και τη 
Γενική Θεωρία της Σχετικότητας (GR) του Einstein.  Αμφότερες θεωρίες έχουν αντέξει 
στο πέρασμα του χρόνου και έχουν επιβεβαιωθεί πειραματικά σε πολυάριθμες 
περιπτώσεις από την απαρχή τους κι έπειτα. Παρά την επιτυχία τους όμως, το SM και 
η GR αποτυγχάνουν να εξηγήσουν κάποια φαινόμενα ενώ περιέχουν και μερικά 
έμφυτα προβλήματα. 

Πρόσφατες παρατηρήσεις της κοσμικής ακτινοβολίας υποβάθρου (CMB) έχουν 
καθορίσει πως το Σύμπαν είναι επίπεδο και ομοιογενές σε μεγάλες κλίμακες. 
Επεκτείνοντας την GR με ένα βαθμωτό πεδίο μπορούμε να οδηγηθούμε σε μια 
πληθωριστική εποχή στα πρώιμα στάδια του Σύμπαντος, η οποία μπορεί να εξηγήσει 
την επιπεδότητα και ομοιογένειά του. Εξετάζοντας τον πληθωρισμό με 
κβαντομηχανικό τρόπο, η θεωρία μπορεί να μας παράσχει τους σπόρους για την 
μετέπειτα δημιουργία δομής που παρατηρούμε (άστρα, γαλαξίες, κ.τ.λ.). Τα 
πρόσφατα αποτελέσματα της αποστολής Planck έχουν περιορίσει τον παραμετρικό 
χώρο των πληθωριστικών παρατηρούμενων ποσοτήτων και έχουν ουσιαστικά 
αποκλείσει πολλά από τα προταθέντα θεωρητικά μοντέλα, συμπεριλαμβανομένων 
των απλούστερων όπου ένα βαθμωτό πεδίο έχει ελάχιστη σύζευξη με τη βαρύτητα. 
Από την άλλη, ελαφρώς πιο περίπλοκα μοντέλα όπως το Starobinsky και τα μη-

ελάχιστα μοντέλα, δείχνουν να κείνται μέσα στο επιτρεπόμενο εύρος. Αυτά τα 
μοντέλα ανήκουν στην οικογένεια των θεωριών βαθμωτής-τανυστικής (ST) 

βαρύτητας. Στα ST μοντέλα, ένα (ή περισσότερα) βαθμωτό πεδίο έχει εν γένει μη-

ελάχιστη σύζευξη με τη βαρύτητα και μπορεί να οδηγήσει σε πληθωρισμό. Μια 
τέτοια μη-ελάχιστη σύζευξη είναι ενδιαφέρουσα κι υπό άλλη έννοια: εάν το βαθμωτό 

πεδίο αναπτύξει αναμενόμενη τιμή κενού (VEV), τότε η κλίμακα Planck μπορεί να 
γεννηθεί με δυναμικό τρόπο. Η κλίμακα Planck (περί τα 1019 GeV) είναι μία εκ των 
δύο γνωστών κλιμάκων μάζας στη Φυσική. Η άλλη είναι η ηλεκτρασθενής (EW) 

κλίμακα (περί τα 250 GeV), σχετιζόμενη με τη VEV του πεδίου Higgs. Δε γνωρίζουμε 
ακόμα γιατί αυτές οι δύο κλίμακες απέχουν τόσο πολύ. 

Το CMB υποδεικνύει επίσης πως γύρω στο 85% της μάζας που περιέχεται στο Σύμπαν 
είναι σε μορή η οποία δεν ακτινοβολεί. Η σκοτεινή ύλη πιστεύεται ότι είναι 
σωματιδιακής φύσης, με την οικογένεια των ασθενώς αλληλεπιδρώντων έμμαζων 
σωματιδίων (WIMPs) να είναι η πιο επιτυχής στην περιγραφή της. Τα WIMPs 

συνήθως εδρεύουν σε σκοτεινούς τομείς οι οποίοι επικοινωνούν με το SM μέσω 
αλληλεπιδράσεων πύλης (portal interactions). Πολυάριθμα πειράματα βρίσκονται σε 



λειτουργία ή αναμένεται σύντομα να λειτουργήσουν, με στόχο την εξεύρεση της 
σκοτεινής ύλης, είτε άμεσα είτε έμμεσα. 

Με την ανακάλυψη του μποζονίου Higgs, έχουμε πλέον προσδιορίσει όλες τις 
παραμέτρους του SM. Παρολαυτά, το SM δεν μπορεί να εξηγήσει τη φύση της 
σκοτεινής ύλης, πώς τα νετρίνα αποκτούν μάζα, την προέλευση της ασυμμετρίας 
ύλης-αντιύλης ή γιατί η QCD φαίνεται να μην παραβιάζει την CP συμμετρία (strong 

CP problem). Επιπλέον, η μετρούμενη τιμή για τη μάζα του Higgs υποδηλώνει ότι το 
κενό μας βρίσκεται σε μια μετασταθή (metastable) κατάσταση από την οποία μπορεί 
ενδεχομένως να υποστεί αυθόρμητη μετάπτωση, με καταστροφικά αποτελέσματα 
για το Σύμπαν μας. Αυτό οφείλεται στο γεγονός ότι η σταθερά αυτο-σύζευξης του 
Higgs μεταβάλλεται με την ενέργεια και αποκτά αρνητικό πρόσημο σε ενέργειες 
πάνω από περίπου 1010 GeV. Το πρόβλημα της ευστάθειας του κενού μπορεί να 
εξαλειφθεί εάν εισάγουμε ένα ή περισσότερα βαθμωτά πεδία τα οποία συζεύγνυνται 
με το Higgs. Νέα πεδία, φερμιονικά ή μποζονικά, μπορούν επίσης να παράσχουν 
λύσεις για τα υπόλοιπα προβλήματα του SM. Παρολαυτά, εξαιτίας κβαντικών 
φαινομένων, η μάζα του Higgs παρουσιάζει μια τετραγωνική ευαισθησία στις 
κλίμακες μάζας που εισάγουμε μαζί με τα νέα πεδία. Χρειαζόμαστε λοιπόν ένα 
τεράστιο ποσό μικρο-ρύθμισης (fine-tuning) για να εξαλείψουμε τις τετραγωνικές 
αποκλίσεις και να ανακτήσουμε την παρατηρούμενη μάζα του Higgs. Αυτό το 
πρόβλημα της φυσικότητας της μάζας του Higgs μετριάζεται σε υπερσυμμετρικές 
επεκτάσεις του SM, εφόσον η υπερσυμμετρία σπάει ήπια σχετικά κοντά στην 
ηλεκτρασθενή κλίμακα. Δυστυχώς, κανένα υπερσυμμετρικό σωματίδιο δεν έχει 
παρατηρηθεί από τον LHC ή άλλους επιταχυντές μέχρι τώρα, κάτι το οποίο έχει 
παρακινήσει την εξερεύνηση εναλλακτικών ιδεών. 

Μια ιδέα η οποία έχει λάβει αρκετή προσοχή τα τελευταία χρόνια είναι αυτή της 
κλασικής συμμετρίας κλίμακας. Η κλασική συμμετρία κλίμακας αξιώνει πως η 
Lagrangian του κλασικού επιπέδου μιας θεωρίας δε θα πρέπει να περιέχει 
οποιαδήποτε ad hoc παράμετρο με διαστάσεις μάζας. Η μόνη τέτοια παράμετρος στο 
SM είναι η παράμετρος μάζας του Higgs η οποία οδηγεί στο σπάσιμο την 
ηλεκτρασθενή συμμετρία. Θέτοντας αυτήν την παράμετρο ίση με το μηδέν 
ενισχύουμε τη συμμετρία του SM. Πηγαίνοντας στο κβαντικό επίπεδο, η μεταβολή 
των συζεύξεων της θεωρίας με την ενέργεια επιφέρει σπάσιμο της συμμετρίας, αλλά 
αυτό δεν επανεισάγει τις τετραγωνικές αποκλίσεις. Συνεπώς, η θεωρία είναι από 
τεχνικής άποψης φυσική. Ο μηχανισμός που ευθύνεται για το σπάσιμο της 
συμμετρίας αναπτύχθηκε από τους S. Coleman και E. Weinberg. Αν εφαρμόσουμε, 
όμως, αυτόν το μηχανισμό στο SM με κλασική συμμετρία κλίμακας (CSI) βρίσκουμε 
ταχυονική μάζα για το Higgs εξαιτίας της μεγάλης μάζας του top κουάρκ. Αυτό 
σημαίνει πως για να δουλέψει ο μηχανισμός Coleman-Weinberg χρειάζεται να 
προσθέσουμε νέα (μποζονικά) πεδία στο SM. Εάν αυτά είναι βαθμωτά πεδία τότε η 
σύζευξή τους με το Higgs μπορεί να συνεισφέρει θετικά στη μεταβολή της αυτο-

σύζευξης του Higgs και να βοηθήσει στη σταθεροποίηση του δυναμικού. 



Νέα πεδία μπορούν επίσης να αποτελέσουν υποψήφιους για σκοτεινή ύλη. Αυτοί οι 
υποψήφιοι μπορούν να είναι βαθμωτά, φερμιόνια, διανυσματικά μποζόνια ή να 
έχουν μεγαλύτερα σπιν. Σε κάθε περίπτωση, θα πρέπει να υπάρχει μια συμμετρία η 
οποία θα καθιστά τους υποψήφιους αυτούς ευσταθείς σε κοσμολογική κλίμακα, 
καθότι σε άλλη περίπτωση θα είχαν διασπαστεί κατά την εξέλιξη του Σύμπαντος και 
δε θα υπήρχαν σήμερα. Τέτοιες σταθεροποιητικές συμμετρίες συνήθως 
επιβάλλονται στις θεωρίες, μπορούν όμως και να προκύψουν αυθόρμητα σαν 
εσωτερικά χαρακτηριστικά νέων συμμετριών βαθμίδας. 

Στο επόμενο κεφάλαιο, ξεκινάμε κάνοντας μια σύντομη ανασκόπηση του ευρέως 
αποδεκτού μοντέλου ΛCDM, γνωστό επίσης σαν το Καθιερωμένο Πρότυπο της 
Κοσμολογίας. Αφότου σκιαγραφήσουμε τα βασικά του χαρακτηριστικά, συζητούμε 
τα προβλήματα του ορίζοντα και της επιπεδότητας τα οποία έχουν κοινή λύση 
εφόσον το Σύμπαν υπέστη μια πληθωριστική εποχή στα πρώιμα στάδιά του. 

Στο κεφάλαιο 3, εξερευνούμε το πρότυπο του κοσμολογικού πληθωρισμού. Αρχικά 
κάνουμε ανασκόπηση της απλούστερης περίπτωσης ενός βαθμωτού πεδίου ελάχιστα 
συζευγμένου με τη βαρύτητα το οποία, με τη βοήθεια ενός κατάλληλου δυναμικού, 
δύναται να οδηγήσει τον πληθωρισμό. Έπειτα, χειριζόμαστε τον πληθωρισμό με 
κβαντομηχανικό τρόπο και εξετάζουμε τη φυσική πίσω από τις κοσμολογικές 
διαταραχές οι οποίες πιστεύεται ότι ήταν οι σπόροι για τη δημιουργία της δομής που 
παρατηρούμε σήμερα στο Σύμπαν. Για να κάνουμε σύνδεση με το πείραμα, 
υπολογίζουμε τους φασματικούς δείκτες καθώς και τον τανυστικό-προς-βαθμωτό 
λόγο και τους εκφράζουμε συναρτήσει των slow-roll παραμέτρων. Κατόπιν, 
γενικεύουμε στην περίπτωση των ST θεωριών οι οποίες περιέχουν μη-ελάχιστη 
σύζευξη μεταξύ του βαθμωτού πεδίου και του βαθμωτού Ricci. Μια τέτοια μη-

ελάχιστη σύζευξη μας ενδιαφέρει υπό την έννοια ότι στα πλαίσια της κλασικής 
συμμετρίας κλίμακας η VEV του πεδίου δύναται να γεννήσει δυναμικά την κλίμακα 
Planck. 

Στο κεφάλαιο 4, κάνουμε μια σύντομη ανασκόπηση των βασικών συστατικών του 
Καθιερωμένου Προτύπου των Στοιχειωδών Σωματιδίων το οποίο έχει αντέξει στο 
πέρασμα του χρόνου για πάνω από τέσσερις δεκαετίες. Έπειτα, σκιαγραφούμε τα 
προβλήματα και τις ελλείψεις του μοντέλου πριν επικεντρωθούμε σε αυτά που μας 
ενδιαφέρουν περισσότερο στην παρούσα διατριβή. 

Στο κεφάλαιο 5, εμβαθύνουμε στο πρόβλημα της σκοτεινής ύλης. Ξεκινάμε 
σκιαγραφώντας τα κύρια αποδεικτικά στοιχεία που υποστηρίζουν την ύπαρξη της 
σκοτεινής ύλης. Έπειτα, κάνουμε μια σύντομη ανασκόπηση των ιδιοτήτων μερικών 
από τους πιο διάσημους υποψήφιους για σκοτεινή ύλη πριν επικεντρωθούμε στο 
πρότυπο WIMP και τα διάφορα χαρακτηριστικά του. Τέλος, παρουσιάζουμε την 
κατάσταση των ερευνών που αφορούν τη σκοτεινή ύλη. 

Στο κεφάλαιο 6, ξεκινάμε αξιώνοντας πως η διάσταση του χωρόχρονου είναι ο λόγος 
πίσω από την εμφάνιση μόνο (υπερ-)επανακανονικοποιήσιμων τελεστών στη 
Lagrangian του SM. Έπειτα, ισχυριζόμαστε πως η κλασική συμμετρία κλίμακας 



ευθύνεται για το γεγονός αυτό και συζητούμε εν συντομία τα κύρια χαρακτηριστικά 
της συμμετρίας πριν εξετάσουμε το πως μια κλίμακα μπορεί να γεννηθεί μέσω 
κβαντικών διορθώσεων χάρη στη μεταβολή των σταθερών σύζευξης στα πλαίσια του 
μηχανισμού Coleman-Weinberg. Κατόπιν, γενικεύουμε τον μηχανισμό Coleman-

Weinberg στην περίπτωση πολλαπλών βαθμωτών πεδίων και συζητάμε τα κύρια 
χαρακτηριστικά διαφόρων CSI μοντέλων που έχουν προταθεί στη βιβλιογραφία. 
Τέλος, εξερευνούμε το πώς η κλίμακα Planck μπορεί να γεννηθεί δυναμικά σε CSI 

τρόπο από τη VEV ενός βαθμωτού πεδίου το οποίο μπορεί επίσης να οδηγήσει τον 
πληθωρισμό. 

Στο κεφάλαιο 7, θεωρούμε το CSI SM επεκταμένο με μια σκοτεινή SU(2)X συμμετρία 
βαθμίδας. Αυτή η νέα συμμετρία βαθμίδας σπάει τελείως από τη VEV ενός βαθμωτού 
πεδίου στη θεμελιώδη αναπαράσταση μέσω του μηχανισμού Coleman-Weinberg. 

Μέσω μιας αλληλεπίδρασης πύλης με το πεδίο Higgs, το σπάσιμο της συμμετρίας 
μεταδίδεται στον ηλεκτρασθενή τομέα. Τα τρία σκοτεινά διανυσματικά μποζόνια 
αποκτούν ίσες μάζες, είναι ευσταθή χάρη σε μια εσωτερική Z2×Z2’ διάκριτη 

συμμετρία και μπορούν επομένως να αποτελέσουν υποψήφιους για σκοτεινή ύλη. 
Προσθέτοντας μια πραγματική βαθμωτή ισομονάδα η οποία συζεύγνυται με τα 
υπόλοιπα βαθμωτά και τρία δεξιόστροφα νετρίνα, τα νετρίνα του SM μπορούν να 
αποκτήσουν μάζα μέσω ενός seesaw μηχανισμού τύπου-I. Αυτό σημαίνει πως η 
ηλεκτρασθενής κλίμακα μάζας καθώς και οι κλίμακες μάζας της σκοτεινής ύλης και 
των νετρίνων ενδέχεται να έχουν μια κοινή, δυναμική προέλευση. Εξατάζοντας την 
εξέλιξη της ομάδας επανακανονικοποίησης των συζεύξεων του μοντέλου βρίσκουμε 
ότι το βαθμωτό δυναμικό μπορεί εύκολα να σταθεροποιηθεί. Τα βαθμωτά μπορούν 
να προσφέρουν στοιχεία της ύπαρξής τους μέσω της μίξης με το Higgs εάν μια 
καθολική απόκλιση από τις προβλεπόμενες τιμές για τις συζεύξεις του SM Higgs 

βρεθεί στον LHC. Επιπροσθέτως, τα σκοτεινά διανυσματικά μποζόνια αποτελούν 
ενδιαφέροντες υποψήφιους για σκοτεινή ύλη καθότι, πέραν των διδακασιών 
εξαΰλωσης, η αριθμητική τους πυκνότητα μπορεί να μεταβληθεί και μέσω ημι-
εξαϋλώσεων. Μπορούν να αναπαράγουν τη μετρούμενη αφθονία σκοτεινής ύλης, να 
αποφύγουν τα ισχύοντα όρια άμεσης ανίχνευσης αλλά παρολαυτά να είναι 
ανιχνεύσιμα από μελοντικά πειράματα. 

Στο κεφάλαιο 8, εξετάζουμε το CSI SM επεκταμένο με μια σκοτεινή SU(3)X συμμετρία 
βαθμίδας. Ο νέος τομέας αποτελείται από οκτώ σκοτεινά διανυσματικά μποζόνια και 
δύο μιγαδικές βαθμωτές τριπλέτες. Κάτω από ήπιες υποθέσεις για τις παραμέτρους 
του βαθμωτού δυναμικού του μοντέλου, οι βαθμωτές τριπλέτες μπορούν να 
αποκτήσουν μη-μηδενικές VEVs και να σπάσουν την SU(3)X τελείως μέσω του 
μηχανισμού Coleman-Weinberg. Οκτώ από τους δώδεκα βαθμωτούς βαθμούς 
ελευθερίας απορροφώνται από τα σκοτεινά διανυσματικά μποζόνια, τα οποία 
καθίστανται όλα έμμαζα. Επικεντρωνόμαστε και αναλύουμε την απλούστερη 
περίπτωση στην οποία το πρότυπο τους σπασίματος συμμετρίας περιέχει δύο VEVs. 

Σαν αποτέλεσμα της σύζευξης του Higgs με τα σκοτεινά βαθμωτά, το σπάσιμο της 
σκοτεινής συμμετρίας πυροδοτεί το σπάσιμο της ηλεκτρασθενούς συμμετρίας και το 
κενό σταθεροποιείται. Από τα οκτώ έμμαζα σκοτεινά διανυσματικά μποζόνια, τα τρία 



ελαφρύτερα είναι σχεδόν εκφυλισμένα στη μάζα και επίσης ευσταθή χάρη σε μια 
εσωτερική Z2×Z2’ διάκριτη συμμετρία της SU(3)X. Αυτά τα τρία διανυσματικά 
μποζόνια είναι βιώσιμοι υποψήφιοι για σκοτεινή ύλη. Αφότου αναγνωρίσουμε τις 
σχετικές διεργασίες σκοτεινής ύλης (εξαϋλώσεις, ημι-εξαϋλώσεις, συν-εξαϋλώσεις 
και μετατροπές σκοτεινής ύλης), κατασκευάζουμε το σετ των πεπλεγμένων 
εξισώσεων Boltzmann, οι οποίες περιγράφουν την εξέλιξη της αριθμητικής 
πυκνότητας των υποψηφίων σκοτεινής ύλης ούτως ώστε να πάρουμε την ολική 
αφθονία και να τη συγκρίνουμε με τη μετρούμενη τιμή. Οι εξισώσεις Boltzmann 

λύνονται αριθμητικά για δύο περιπτώσεις οι οποίες καθορίζονται από τις VEVs των 
βαθμωτών πεδίων της SU(3)X. Στη μία περίπτωση, πιθανές επιδράσεις συν-

εξαϋλώσεων  πρέπει να ληφθούν υπόψη. Παρολαυτά, προκύπτει πως και στις δύο 
περιπτώσεις η κυρίαρχη επίδραση είναι η μετατροπή σκοτεινής ύλης μεταξύ των 
τριών υποψηφίων και πως ο ελαφρύτερος από αυτούς είναι η κυρίαρχη συνιστώσα 
της σκοτεινής ύλης. Τέλος, δείχνουμε ότι οι υποψήφιοι για σκοτεινή ύλη έχουν 
βιώσιμες προοπτικές για να ανιχνευτούν άμεσα από υπόγεια μελλοντικά πειράματα. 

Στο κεφάλαιο 9, στο πλαίσιο των ST θεωριών βαρύτητας υπολογίζουμε τους 
φασματικούς δείκτες με διορθώσεις τρίτης τάξης στην προσέγγιση slow-roll. Ο 
υπολογισμός πραγματοποιείται εφαρμόζοντας τη μέθοδο της συνάρτησης Green για  
βαθμωτές και τανυστικές διαταραχές στα Einstein και Jordan συστήματα αναφοράς. 

Έπειτα, χρησιμοποιώντας τις σχέσεις μεταξύ των Hubble παραμέτρων slow-roll στα 
δύο συστήματα αναφοράς βρίσκουμε ότι αυτά είναι ισοδύναμα ως την τρίτη τάξη. 
Καθόσον οι Hubble παράμετροι slow-roll σχετίζονται με τις παραμέτρους slow-roll 

του δυναμικού, εκφράζουμε τις παρατηρούμενες ποσότητες συναρτήσει των 
τελευταίων οι οποίες είναι αναλλοίωτες κάτω από σύμμορφους μετασχηματισμούς 
της μετρικής και επαναπαραμετροποιήσεις του βαθμωτού πεδίου. Παρολαυτά, η 
ίδια μεταβολή του inflaton μπορεί να οδηγήσει σε διαφορετικές προβλέψεις στα δύο 
συστήματα αναφοράς καθότι ο ορισμός του αριθμού των e-folds διαφέρει. Για να 
διευκρινίσουμε το ζήτημα, θεωρούμε ένα μη-ελάχιστο πληθωριστικό μοντέλο όπου 
η κλίμακα Planck γεννιέται δυναμικά και βρίσκουμε ότι η διαφορά στις προβλέψεις 
μεγαλώνει όσο μεγαλώνει η μη-ελάχιστη σύζευξη και μπορεί πράγματι να είναι 
μεγαλύτερη από τη διαφορά μεταξύ των αποτελεσμάτων πρώτης και τρίτης τάξης για 
τις παρατηρούμενες ποσότητες. Τέλος, επιδεικνύουμε τα αποτελέσματα διαφόρων 
συνθηκών για το τέλος του πληθωρισμού στις παρατηρούμενες ποσότητες. Αυτές οι 
διαφορές θα σημαντικές για τις αναλύσεις πληθωριστικών μοντέλων ενόψει της 
βελτιωμένης ευαισθησίας των μελλοντικών πειραμάτων. 

Τέλος, στο κεφάλαιο 10 παραθέτουμε τα συμπεράσματά μας και συζητάμε πιθανές 
μελλοντικές κατευθύνσεις. Χρήσιμοι τύποι δίνονται στα παραρτήματα. 





ix

Acknowledgements
I thank my supervisor Professor Kyriakos Tamvakis and all those who stood by my side these
last few years. Part of the research presented in this thesis has been cofinanced by the European
Union (European Social Fund - ESF) and Greek national funds through the Operational Program
Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Research
Funding Program: ARISTEIA - Investing in the society of knowledge through the European Social Fund.





xi

Contents

Abstract i

Acknowledgements ix

1 Introduction and Summary 1

2 The Standard Model of Cosmology 5

2.1 A Short History of the Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The ΛCDM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Cosmic Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The Friedmann – Lemaître – Robertson – Walker Metric . . . . . . . . . . . . 10
2.2.3 Einstein Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Particles in Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Problems of the Big Bang Theory and their Inflationary Solutions . . . . . . . . . . . 17
2.3.1 The Horizon Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 The Flatness Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Inflation 21

3.1 Minimal Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Scalar Field Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Slow-roll Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Cosmological Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 The Scalar-Vector-Tensor Decomposition . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Quantization of Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Power Spectra and Spectral Indices . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Higher-order Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Example: chaotic inflation from a polynomial potential . . . . . . . . . . . . . 33

3.3 Scalar-Tensor Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 General action functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 The Frame Controversy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Inflationary Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The Standard Model of Particle Physics and Beyond 41

4.1 The Standard Model Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Shortcomings of the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Vacuum Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Hierarchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Right-handed Neutrinos and Type-I Seesaw . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Dark Matter 57

5.1 Evidence for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.1 Galactic rotation curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



xii

5.1.2 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.3 CMB radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.4 General remarks on dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Dark matter candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 The WIMP paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Boltzmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Thermal Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Freeze-out Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.4 WIMP Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.5 Stabilizing Symmetries from new Gauge Groups . . . . . . . . . . . . . . . . . 69

5.4 Dark Matter Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Indirect detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.3 Collider searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Classical Scale Invariance 75

6.1 Renormalizability of Effective Field Theories . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Classical scale invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Coleman-Weinberg Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.1 Effective Action and Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.2 One-loop effective potential for classically massless U(1) . . . . . . . . . . . . 80
6.3.3 Coleman-Weinberg mechanism and renormalization group running . . . . . 82
6.3.4 Bardeen’s Argument on the Hierarchy Problem . . . . . . . . . . . . . . . . . 82

6.4 Gildener-Weinberg Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Classically scale-invariant extensions of the Standard Model . . . . . . . . . . . . . . 86
6.6 Dynamical generation of the Planck scale . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Dark matter and neutrino masses from a classically scale-invariant multi-Higgs portal 89

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 The tree-level scalar potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2.2 The scalar masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2.3 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.2.4 The one-loop potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Phenomenological analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.3.1 Theoretical constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.2 Experimental constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 Dark matter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.1 Boltzmann equation and relic density . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.2 Dark matter direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8 Dark matter from a classically scale-invariant SU(3)X 107

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.1 Tree-level potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2.2 Scalar masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2.3 Dark gauge boson masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2.4 One-loop potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Phenomenological analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.4 Dark matter analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4.1 Boltzmann equations and relic density . . . . . . . . . . . . . . . . . . . . . . . 117



xiii

Case v2
1 ≫ v2

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Case v1 ≃ v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4.2 Direct detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9 Frame-dependence of higher-order inflationary observables in scalar-tensor theories 125

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9.2 Invariant formalism and slow-roll approximation . . . . . . . . . . . . . . . . . . . . 126

9.2.1 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.2.2 Slow-roll in the Jordan frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.2.3 Slow-roll in the Einstein frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
9.2.4 Invariant potential slow-roll parameters . . . . . . . . . . . . . . . . . . . . . . 131

9.3 Higher-order spectral indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3.1 Jordan frame analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3.2 Einstein frame results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3.3 Equivalence of the frames up to third order . . . . . . . . . . . . . . . . . . . . 136
9.3.4 Invariant expressions for the inflationary observables . . . . . . . . . . . . . . 137

9.4 Number of e-folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.4.1 Einstein vs Jordan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.4.2 Taylor vs Padé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

10 Conclusions and Outlook 143

A Oblique parameters 147

B Renormalization group equations 148

C From Hubble to potential slow-roll parameters 150

D Runnings of the spectral indices 151

E Equation of motion in terms of e-folds 152





xv

Dedicated to my family and friends





1

Chapter 1

Introduction and Summary

An exciting era is underway for high-energy Physics and Cosmology. The recent discovery of the
Higgs boson at the LHC in CERN and the observation of gravitational waves originating from
merging black holes at LIGO have reaffirmed the long-standing pillars of our understanding of the
physics of the Universe, namely, the Standard Model (SM) of Particle Physics and Einstein’s theory
of General Relativity (GR). Both theories have stood the test of time and have been validated in
numerous occasions since their inception. Despite their successes though, the SM and GR fail to
explain some phenomena and also contain a few innate problems of their own.

Recent observations of the cosmic microwave background (CMB) have determined the Universe
to be almost flat and homogeneous at large scales. Supplementing GR with a scalar field can lead
to an inflating era in the early moments of the Universe, which can explain its flatness and homo-
geneity. When treated quantum-mechanically, the theory of inflation can also provide the seeds for
the large-scale structure we observe (galaxy clusters and filaments). The recent results from the
Planck mission [1] have constrained the parameter space of the inflationary observables and es-
sentially ruled out many of the proposed models, including the simplest ones where a scalar field
is minimally coupled to gravity. On the other hand, slightly more involved models such as the
Starobinsky and non-minimal models, seem to lie within the allowed range. These models belong
to the class of scalar-tensor (ST) theories [2]. In ST models, one (or more) scalar field is generally
non-minimally coupled to gravity and can drive inflation. Such a non-minimal coupling is also in-
teresting from another point of view: if the scalar field develops a vacuum expectation value (VEV),
then the Planck scale can be generated in a dynamical way. The Planck scale (around 1019 GeV) is
one of the two known mass scales in physics. The other one is the electroweak (EW) scale (around
250 GeV), related to the VEV of the Higgs field. We still do not know why these two scales are so
vastly separated.

The CMB also indicates that around 85% of the mass content of the Universe is in a form which
does not radiate. Dark matter (DM) is believed to be of particulate nature, with the class of weakly in-
teracting massive particles (WIMPs) being the most successful in describing it. WIMPs usually reside
in dark sectors which communicate with the SM through portal interactions. Numerous experiments
are currently operating or are expected to become operational in the next few years, with the aim
of detecting DM, either directly or indirectly.

With the discovery of the Higgs boson, we have now determined all the parameters of the SM.
Nevertheless, the SM still cannot explain the nature of DM, how neutrinos obtain their mass, the
origin of the matter-antimatter asymmetry or why QCD does not violate the CP symmetry (strong
CP problem). Furthermore, the measured value of the Higgs mass suggests that our vacuum is in
a metastable state and could potentially decay [3, 4] with catastrophic results. This is due to the
fact that the Higgs self-coupling evolves with energy and the measured values of the Higgs and
top quark masses suggest that it becomes negative at energies above circa 1010 GeV. The vacuum
stability problem can be remedied if we introduce one or more scalar fields that couple to the Higgs.
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New fields, fermionic or bosonic, can also provide solutions for the rest of the problems of the SM.
However, due to quantum effects, the Higgs mass displays a quadratic sensitivity to the mass scales
we introduce along with the new fields. We then need an enormous amount of fine-tuning in or-
der to cancel the quadratic divergences and retrieve the observed Higgs mass. This problem of
the naturalness of the Higgs mass is mitigated in supersymmetric extensions of the SM, as long as
supersymmetry is softly broken not too far away from the EW scale. Unfortunately, no supersym-
metric particles have been observed by the LHC or other colliders so far, which has prompted the
exploration of alternative ideas.

An idea that has received a lot of attention in recent years is that of classical scale invariance.
Classical scale invariance posits that the tree-level Lagrangian of a theory should not contain any ad
hoc mass parameters. The only mass parameter in the SM is the Higgs mass parameter which drives
EW symmetry breaking. Setting this parameter to zero enhances the symmetry of the SM [5]. Going
to the quantum level, the running of the couplings of the theory with energy induces symmetry
breaking, but this does not reintroduce the quadratic divergences [6]. Thus, the theory is technically
natural. The mechanism responsible for breaking the symmetry was developed by S. Coleman and
E. Weinberg [7]. If we apply, however, this mechanism to the classically scale-invariant (CSI) SM
we find a tachyonic mass for the Higgs due to the large mass of the top quark. This means that for
the Coleman-Weinberg mechanism to work we need to add new (bosonic) fields to the SM. If these
are scalar fields then their couplings to the Higgs field can contribute positively to the running of
the Higgs self-coupling and also help stabilise the potential.

New fields can also provide candidates for DM. These candidates can be scalars, fermions, vec-
tor bosons or have higher spins. In any case, there should be a symmetry that renders the DM
candidates stable, since otherwise they would have decayed during the evolution of the Universe
and would not be present today. Such a stabilizing symmetry is usually “put by hand", but it can
also arise naturally as an intrinsic feature of new gauge symmetries.

In the next chapter, we begin by briefly reviewing the widely accepted ΛCDM model, also
known as the Standard Model of Cosmology. After outlining its basic ingredients, we discuss the
problems of horizon and flatness which can be simultaneously solved if the Universe underwent
an inflationary era in its early stages.

In Chapter 3, we explore the paradigm of cosmic inflation. First, we review the simplest case
of a real scalar field minimally coupled to gravity which, with a suitable potential, can drive infla-
tion. Then, we treat inflation in a quantum-mechanical way and we examine the physics behind
cosmological perturbations which are believed to have been the seeds of all structure we observe
today in the Universe. To make a connection with experiment, we compute the spectral indices and
tensor-to-scalar ratio and express them in terms of the so-called slow-roll parameters. After that,
we generalize to the case of ST theories which contain a non-minimal coupling between the scalar
field and the Ricci scalar. We are interested in such a non-minimal coupling since, in the context of
classical scale invariance, the VEV of the field is able to dynamically generate the Planck scale.

In Chapter 4, we briefly review the basic ingredients that comprise the Standard Model of Par-
ticle Physics which has stood the test of time for over four decades. Then, we outline its problems
and shortcomings before focusing on the ones that are of interest to us in this thesis.

In Chapter 5, we delve into the problem of dark matter. We begin by outlining the main evidence
supporting the existence of DM. Then, we briefly review the properties of some of the most popular
DM candidates before focusing on the WIMP paradigm and its various aspects. Finally, we present
the status of the ongoing DM searches.

In Chapter 6, we begin by conjecturing that the dimensionality of spacetime is the reason behind
the appearance of only (super-)renormalizable operators in the Lagrangian of the Standard Model.
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Then, we argue that classical scale invariance is responsible for this fact and briefly discuss the main
features of the symmetry before examining how a scale can be radiatively generated due to the
running of the coupling constants in the context of the Coleman-Weinberg mechanism. After that,
we generalize the Coleman-Weinberg mechanism to the case of multiple scalar fields and discuss
the main features of the various CSI models found in the literature. Finally, we explore how the
Planck scale can be dynamically generated in a CSI manner by the VEV of a scalar field that can
also drive inflation.

In Chapter 7, we consider the CSI SM extended by a dark SU(2) gauge symmetry. This new
gauge symmetry gets completely broken by a scalar field in the fundamental representation via
the Coleman-Weinberg mechanism. Through a portal interaction with the Higgs field, symmetry
breaking is then communicated to the electroweak sector. The three dark gauge bosons obtain equal
masses, are stable due to an intrinsic Z2 × Z′

2 discrete symmetry and can therefore constitute DM
candidates. By adding a real scalar singlet which couples to the other scalar fields and three right-
handed sterile neutrinos, the SM neutrinos can obtain their mass through a type-I seesaw mecha-
nism. This means that the electroweak, the DM, and the neutrino mass scales may have a common,
dynamical origin. By examining the renormalization group evolution of the couplings of the model
we find that the scalar potential can be easily stabilized. The scalars may offer hints of their exis-
tence via their mixing with the Higgs if a universal deviation of the predicted SM Higgs couplings is
found at the LHC. Furthermore, the dark gauge bosons are interesting DM candidates since, apart
from annihilation processes, their number density can change through semi-annihilations as well.
They can reproduce the measured DM relic density, evade the current direct detection limits but
nevertheless be detectable by ongoing and future experiments.

In Chapter 8, we examine a CSI extension of the SM, enlarged by a weakly-coupled dark SU(3)X

gauge group. The new sector consists of eight dark gauge bosons and two complex scalar triplets.
Under mild assumptions on the parameters of the scalar potential of the model, the scalar triplets
can develop non-vanishing VEVs and break the extra SU(3)X completely via the Coleman-Weinberg
mechanism. Eight of the twelve scalar degrees of freedom are absorbed by the dark gauge bosons,
rendering them all massive. We focus on and analyze the case in which the symmetry breaking
pattern involves two VEVs. As a result of the portal couplings of the dark scalars to the Higgs
field, the dark gauge symmetry breakdown triggers electroweak symmetry breaking and the vac-
uum can be stabilised. Out of the eight massive dark gauge bosons, the lightest three of them are
almost degenerate in mass and also stable due to an intrinsic Z2 × Z′

2 discrete symmetry of SU(3)X.
These are viable DM candidates. After identifying the relevant DM processes (annihilations, semi-
annihilations, co-annihilations, and DM conversions), the set of coupled Boltzmann equations is
constructed, describing the number density evolution of the DM candidates in order to obtain their
total relic density and compare it to the measured value. The Boltzmann equations are solved
numerically in two cases defined by the VEVs of the SU(3)X scalar fields. In one of these cases,
possible co-annihilation effects have to be taken into account. However, it turns out that in both
cases the dominant effect is DM conversion between the DM species and that the lightest candi-
date is the predominant DM component. Finally, we determine that the DM candidates have viable
prospects of being directly detected by future underground experiments.

In Chapter 9, in the context of scalar-tensor theories of gravity we compute the third-order cor-
rected spectral indices in the slow-roll approximation. The calculation is carried out by employing
the Green’s function method for scalar and tensor perturbations in both the Einstein and Jordan
frames. Then, using the interrelations between the Hubble slow-roll parameters in the two frames
we find that the frames are equivalent up to third order. Since the Hubble slow-roll parameters are
related to the potential slow-roll parameters, we express the observables in terms of the latter which
are manifestly invariant under a conformal transformation of the metric and a reparametrization of
the scalar field. Nevertheless, the same inflaton excursion leads to different predictions in the two



4 Chapter 1. Introduction and Summary

frames since the definition of the number of e-folds differs. To illustrate this effect we consider
a non-minimal inflationary model where the Planck scale can be dynamically generated and find
that the difference in the predictions grows with the non-minimal coupling and it can actually be
larger than the difference between the first and third order results for the observables. Finally, we
demonstrate the effect of various end-of-inflation conditions on the observables. These effects will
become important for the analyses of inflationary models in view of the improved sensitivity of
future experiments.

Finally, in Chapter 10, we present our conclusions and discuss possible future directions. Useful
formulae are presented in the appendices.

Notation

Throughout this thesis we will use the natural units

c = kB = h̄ = 1 .

We will also use the reduced Planck mass

MPl = (8πG)−1/2 ,

and often set it equal to one. We will also adopt the Einstein summation convention where repeated
indices are summed over. Greek indices will take the values µ, ν = 0, 1, 2, 3 and Latin letters are
used as spatial indices i, j = 1, 2, 3. For conformal time we use the letter τ. The letter η is used for
the second slow-roll parameter. Derivatives with respect to cosmic time are indicated by overdots,
while derivatives with respect to conformal time are denoted by primes.
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Chapter 2

The Standard Model of Cosmology

Ever since we evolved into humans, we would look at the stars and start imagining how our Cos-
mos came to be. In this way, the first myths and religions were created and everything we could
not understand was attributed to unknown forces. Later on, as our civilization also evolved and
science progressed, the first scientists began getting a clearer picture of the history of our Universe
and what it entails. Most of the progress has occurred during the last hundred years.

In the early 20th century, Albert Einstein unified space and time in his theory of General Rel-
ativity (GR) [8] and showed, through his elegant field equations, how matter and energy curve
spacetime. He found that the solutions to these equations could describe a Universe which is either
expanding or contracting. Since this came into conflict with his philosophy of a static Universe, he
introduced a constant to negate the effects of any possible expansion or contraction, which later be-
came known as the cosmological constant. As Edwin Hubble observed, though, most of the galaxies
are hurdling away from the Milky Way, which means the Universe is actually expanding. Another
surprising twist took place in the 1990s when astronomers found that the Universe is not only ex-
panding, but it does so at an accelerating rate.

Such a behaviour can be encoded in the aforementioned cosmological constant, which is be-
lieved to be a constant energy density that fills space in a homogeneous way and has been dubbed
dark energy. Recent observations from the Planck mission [1] suggest that dark energy accounts for
around 69% of the energy budget of the Universe. Ordinary matter – described by the Standard Model
of Particle Physics (to be discussed in detail in Chap. 4) – takes up around 5% of the energy budget.
The rest 26% is in a form that gravitates but does not emit electromagnetic radiation and has thus
been called dark matter (to be discussed in detail in Chap. 5).

As you can see, we still attribute phenomena we do not understand to unknown forces, but we
believe these to be of physical origin. Let us now imagine that the Universe is one majestic film
nearly 14 billion years long and start rewinding it. As we go back in time we would see the galaxies
coming together and spacetime shrinking until density and temperature reached immeasurable
values, leading to the singularity known as the Big Bang. In 1965, the afterglow of the Big Bang was
discovered in the famous Cosmic Microwave Background radiation (CMB) [9]. The CMB contains
a lot of information which we have been decoding since its discovery. Fast forward to today and
we have constructed the Standard Model of Cosmology, also known as the ΛCDM model [10–12].

This chapter is organized as follows: In the next section we present a short history of the main
events of the Universe as inferred by various observations and theoretical considerations. Then,
in Section 2.2, we outline the basic ingredients of the ΛCDM model which is based on the theory
of General Relativity and the cosmological principle. Finally, in Section 2.3, we discuss two of the
problems of the standard Big Bang Cosmology, namely the horizon and flatness problems, and then
entertain their possible inflationary solutions.
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2.1 A Short History of the Universe

Before we delve into the specifics of the ΛCDM model, let us first present a qualitative summary of
what we know and what we speculate about the evolution of the Universe between the Big Bang
and today (see Fig.2.1).

Figure 2.1: The history of the Universe. Credit: Particle Data Group at Lawrence Berkeley National

Lab.

The Universe is assumed to have started as an extremely hot and dense plasma which eventu-
ally cooled down during the subsequent expansion. Its very early moments are unknown to us
since they occurred at very high energies (above ∼ 1018 GeV) and we still have not settled on an
acceptable theory for quantum gravity.

Inflation. Around 10−36 s after the Big Bang (or ∼ 1016 GeV) an inflationary epoch is thought to
have occurred. During inflation (to be discussed in detail in Chap. 3), the Universe underwent an

http://www.particleadventure.org/history-universe.html
http://www.particleadventure.org/history-universe.html
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Table 2.1: Major events in the thermal history of the Universe.

Event Time t Redshift z Energy E

Planck Epoch? < 10−43 s – > 1018 GeV

Inflation 10−34 s – 1015 GeV

Baryogenesis ? ? ?

Dark Matter Freeze-Out ? ? ?

EW Phase Transition 20 ps 1015 100 GeV

QCD Phase Transition 20 µs 1012 150 MeV

Neutrino Decoupling 1 s 6 × 109 1 MeV

Electron-Positron Annihilation 6 s 2 × 109 500 keV

Big Bang Nucleosynthesis 3 min 4 × 108 100 keV

Matter-Radiation Equality 60 kyr 3400 0.75 eV

Recombination 260 − 380 kyr 1100 − 1400 0.26 − 0.33 eV

Photon Decoupling 380 kyr 1000 − 1200 0.23 − 0.28 eV

Reionization 100 − 400 Myr 11 − 30 2.6 − 7.0 meV

Dark Energy-Matter Equality 9 Gyr 0.4 0.33 meV

Today 13.8 Gyr 0 0.24 meV

exponential expansion during which the scale factor a grew as a(t) = exp(Ht), where t is the cosmic
time and H the Hubble factor.

Inflation was originally proposed as a solution to the horizon and flatness problems. The horizon
problem is related to the fact that measurements from the CMB indicate that the Universe has almost
the same temperature in all directions in the sky. This means, however, that two distant patches
cannot have been in causal contact in the past since they would not have enough time to have
communicated if the standard evolution is assumed. If, however, a period of exponential expansion
is assumed, as is the case in inflation, then the patches which were in causal contact before the end
of inflation could have become stretched and widely separated after the end of inflation.

The flatness problem is related to the fact that the curvature of spacetime at large scales is es-
timated to be almost exactly zero [1], which means the matter and energy density of the Universe
must have a critical value. Such a value seems to be extremely fined-tuned, since otherwise the Uni-
verse would be open or closed. Furthermore, because in a non flat Universe the curvature increases
as we go back in time, the curvature energy density in the early universe must have had a density
even closer to the critical density, deviating from it by at most one part in 1062. Of course, we can
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always invoke the anthropic principle in order to explain away this amount of fine-tuning. In a
physical context, however, the exponential expansion during inflation dilutes the curvature and an
initial value of zero can remain zero when inflation ends.

The horizon and flatness problems can simultaneously be solved if inflation lasted for at least 50
– 60 e-folds, a dimensionless number that measures the exponential change of the scale factor and
is defined as

N := ln
(

a2

a1

)

=

∫ t2

t1

Hdt. (2.1)

In most models of inflation, a real scalar field φ, called the inflaton, behaves like a cosmological
constant as it slowly rolls down its potential V(φ) and drives an inflationary epoch. When the
inflaton reaches the minimum of the potential, inflation ends. Then, as the inflaton starts oscillating
around the minimum it decays into other particles, in a process called reheating.

After reheating, the evolution of the Universe is characterized by two principles: i) particles
freeze out as soon as their interaction rate Γ becomes smaller than the expansion rate H, and ii)
symmetries in the fundamental laws of physics which are broken now may be restored at high
energies.

Baryogenesis. One of the great puzzles of Particle Physics and Cosmology is the mechanism behind
baryogenesis. Relativistic quantum field theory predicts the existence of anti-matter, giving rise to
processes such as e− + e+ → γ + γ. But since everything around us is made up only of matter,
an asymmetry must have occurred during the early phases of the Universe which resulted in the
observed baryon-to-photon ratio

nb

nγ
∼ 109. (2.2)

Dark matter freeze-out. As the Universe is expanding and cooling, the pair annihilations between
dark matter particles become more rare and then eventually stop as their interaction rate becomes
smaller than the expansion rate, Γ . H. After that point, which is called dark matter freeze-out, the
dark matter particles fall out of equilibrium with the thermal bath and settle on their constant relic
abundance which we detect today (see Chapter 5).

Electroweak phase transition. Around 100 GeV the Higgs mechanism occurs (see Chapter 4) and
the electroweak symmetry SU(2)× U(1) breaks to the electromagnetic U(1). In this way, the lep-
tons, quarks and gauge bosons obtain the masses we observe at the experiments.

QCD phase transition. As the Universe further cools down below 150 MeV, the interactions be-
tween the quarks and gluons become important. After that, quarks and gluons are confined into
hadrons. Three-quark states are called baryons, while quark-antiquark pairs are called mesons.

Neutrino decoupling. At around 1 MeV neutrinos decouple from the plasma since the interaction
rate of scattering processes such as e− + e+ ↔ νe + ν̄e becomes slower than the expansion rate of
the Universe. At this point, the relic neutrinos give rise to the Cosmic Neutrino Background which is
nevertheless very hard to directly detect since these neutrinos have extremely low energy.

Electron-positron annihilation. Shortly after neutrino decoupling, the energy densities of electrons
and positrons get transferred to the photons (but not the neutrinos) through the annihilation process
e−+ e+ → γ+γ. As a result, the photons are reheated, which is why the temperature of the photons
today is higher than the neutrino temperature.

Big Bang nucleosynthesis. Around the famous 3 minute mark [13], the energy of the photons is
not enough to break the nuclear binding energy and hadron scatterings can now produce the light
nuclei, namely deuterium, helium, and lithium. Heavier elements form later inside stars and during
violent events such as supernovae explosions.
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Recombination. Below the temperature of 1 eV a matter-radiation equality is reached and then the
matter energy density dominates the evolution of the Universe. Electrons and nuclei combine to
form neutral atoms, mostly hydrogen through the reaction e− + p+ → H + γ. At this point, the
photons can no longer break the electron-nucleus binding energy and matter stops being ionized.

Photon decoupling. After recombination, at 380, 000 years after the Big Bang, Thomson scattering
(e− + γ → e− + γ) becomes inefficient due to the sharp drop in the density of free electrons. As
a result, the photons decouple and can now freely stream through the Universe. We observe them
today as the CMB radiation.

Figure 2.2: The anisotropies of the cosmic microwave background (CMB), as observed by the Eu-

ropean Space Agency’s Planck satellite. The CMB is a snapshot of the oldest light in our Universe,

imprinted on the sky when the Universe was just 380000 years old. It shows tiny temperature fluc-

tuations that correspond to regions of slightly different densities, representing the seeds of all future

structure: the stars and galaxies of today. Credit: ESA and the Planck Collaboration

Reionization. At around 100 million years, gravity takes over and hydrogen atoms start coalesc-
ing. They radiate energy and the plasma becomes ionized once again. The matter perturbations
generated during inflation evolve into stars, galaxies, and filaments.

Dark energy domination. Finally, around 9 billion years after the Big Bang, matter and radiation
have diluted enough for the density of dark energy to start dominating. After this point, the Uni-
verse is expanding with an accelerating rate due to the effect of the cosmological constant.

After this qualitative summary of the main events in the history of the Universe, we will outline
the basic ingredients of the ΛCDM model, where Λ refers to the cosmological constant and CDM
stands for cold dark matter. After that, we will briefly discuss the flatness and horizon problems.

http://www.esa.int/spaceinimages/Images/2013/03/Planck_CMB
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2.2 The ΛCDM Model

2.2.1 Cosmic Expansion

There is good evidence that we live in an expanding Universe [14, 15]. This means that at ear-
lier times distant galaxies were closer to us than they are today. We can quantify the expand-
ing behaviour of the Universe with the help of the scale factor a = a(t), where today we have1

a0 = a(t0) = 1 and a(t < 0) < 1. The scale factor can be used to define the so-called comoving dis-
tance Lcom. Two points that are at rest in an expanding Universe have the same comoving distance
throughout its evolution since the comoving distance does not change with time. The physical dis-
tance Lphys, on the other hand, is proportional to the scale factor which means it evolves with time.
We have

Lphys = a(t)Lcom. (2.3)

By differentiating Eq. (2.3) with respect to cosmic time t, we obtain

v =
dLphys

dt
=

ȧ
a

Lphys = HLphys, (2.4)

where
H :=

ȧ
a

(2.5)

is the Hubble factor or Hubble parameter which has the unit of inverse time and is positive for an
expanding Universe (and negative for a contracting Universe).Equation 2.4 is also known as the
Hubble law. The most recent measurements from the Planck mission [1] for the current value of H
give

H0 = 67.74 ± 0.46km/s/Mpc = 100 h km/s/Mpc , (2.6)

where h is the reduced Hubble parameter, which is also often used. From the Hubble parameter we
can define the Hubble time, which is just its inverse

tH :=
1

H0
= 4.55 × 1017 s = 14.4 billion years. (2.7)

The Hubble time is different from the age of the Universe t0 ≈ 13.8 billion years, since the expansion
has not been linear throughout its evolution. By multiplying the Hubble parameter with the speed
of light c, we can also define the Hubble length cH−1 = 14.4 billion light years, which is interpreted
as the distance between the Earth and the galaxies which are currently receding from us at the speed
of light.

2.2.2 The Friedmann – Lemaître – Robertson – Walker Metric

In General Relativity, the geometrical properties of spacetime can be described with the help of the
metric gµν, which depends on the spacetime coordinates xµ =

(

x0, xi
)

, where x0 = t is the time-like
component and xi are the 3 spatial components. The distance between two points is given by the
invariant square of an infinitesimal line element,

ds2 := gµνdxµdxν . (2.8)

1The subscript 0 will be used to denote the values of the related quantities today.
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Since the metric gµν must be a symmetric 4 × 4 tensor, we are left with 10 independent coeffi-
cients. A Universe which is homogeneous and isotropic is described by the Friedmann - Lemaître
- Robertson - Walker Metric (FLRW) metric [16–23]. Homogeneity suggests there are no privileged
observers in the Universe, therefore gµν must not depend on the spatial coordinates. Furthermore,
isotropy of the Universe suggests there is no preferred direction, which implies that the off-diagonal
entries of gµν (µ 6= ν) must vanish. For a local observer in a flat Minkowski spacetime, we obtain
the limit of special relativity with ηµν = diag(−1,+1,+1,+1), while the metric is approximated as

gµν =









−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)









(2.9)

and the line element becomes
ds2 = −dt2 + a2(t)δijdxidxj , (2.10)

where δij = diag(+1,+1,+1) is the Kronecker delta in an Euclidean space.

In general, the Universe can be open, flat, or closed. We can encode the spatial curvature in a
discrete parameter K = −1, 0, 1. Then, using spherical coordinates, the line element (2.8) can be
written as

ds2 = −dt2 + a2(t)
[

dr2

1 −Kr2 + r2(dθ2 + sin2 θdφ2)

]

(2.11)

= −dt2 + a2(t)γij(x)dxidxj , (2.12)

where (r, θ, φ) are the standard spherical coordinates and

γ11 = γrr =
1

1 −Kr2 , γ22 = γθθ = r2 , γ33 = γφφ = r2 sin2 θ . (2.13)

It is often convenient to use, instead of t, the conformal time coordinate τ defined as

dτ :=
dt
a

. (2.14)

Then the line element (2.12) can be rewritten as

ds2 = a2(τ)
[

−dτ2 + γij(x)dxidxj
]

. (2.15)

We can also define the conformal Hubble parameter

H(τ) :=
da/dτ

a
=

a′

a
. (2.16)

Then, the Hubble parameter in cosmic and conformal time are related to one another by

H = aH . (2.17)

In order to study the motion of a particle in a spacetime described by a metric gµν, it proves
useful to employ the Christoffel symbols Γ

ρ
µν, which are symmetric in the µ and ν indices:

Γ
ρ
µν :=

gρτ

2

(

∂µgντ + ∂νgµτ − ∂τgµν

)

, (2.18)
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where we also introduced the notation ∂µgντ = ∂gντ/∂xµ. The Christoffel symbols enter in the
geodesic equation

d2xµ

dλ2 = −Γ
µ
αβ

dxα

dλ

dxβ

dλ
, (2.19)

which describes the motion of particles in nontrivial coordinate systems and where λ is a scalar
monotonic parameter that increases along the particle’s path. In FLRW spacetime, the Christoffel
symbols are calculated to be

Γ
0
0µ = Γ

0
µ0 = 0 , (2.20)

Γ
0
ij = γij ȧ a , (2.21)

Γ
i
0j = Γ

i
j0 = δij

ȧ
a

, (2.22)

Γ
i
αβ = 0 otherwise. (2.23)

With the help of the Christoffel symbols we can define the Ricci tensor, which has the following
expression:

Rµν := ∂αΓ
α
µν − ∂νΓ

α
µα + Γ

α
βαΓ

β
µν − Γ

α
βνΓ

β
µα . (2.24)

Taking the trace of the Ricci tensor, we obtain the Ricci scalar:

R := Rµ
µ = gµνRµν, (2.25)

where gµν is the inverse of gµν. The Ricci tensor is diagonal and its components are found to be

R00 = −3
ä
a

, (2.26)

Rij = γij
(

2ȧ2 + aä + 2K
)

, (2.27)

while the Ricci scalar is:

R = 6
(

ä
a
+

ȧ2

a2 +
K
a2

)

. (2.28)

2.2.3 Einstein Field Equations

In order to obtain the Einstein field equations we start from the Einstein-Hilbert action, which reads

SEH =
1
2

M2
Pl

∫

d4x
√

−g (R − 2Λ) , (2.29)

where g = det(gµν) is the determinant of the metric tensor matrix. To this action we should add a
part describing matter, namely

Sm =

∫

d4x
√

−gLm , (2.30)

where Lm is the matter Lagrangian density. By varying these two action terms with respect to
the metric gµν, we obtain the Einstein tensor Gµν which measures the “spacetime curvature" of the
Universe, given by

Gµν + Λgµν :=
2

M2
Pl
√−g

∂SEH

∂gµν
= Rµν −

1
2

Rgµν + Λgµν (2.31)
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for the gravity part, and the energy-momentum tensor which measures the matter content of the
Universe, given by

Tµν =: − 2√−g
∂Sm

∂gµν
= gµνLm − 2

δLm

δgµν
(2.32)

for the matter part. Then, using the action principle we obtain the Einstein equations

Gµν + Λgµν = M−2
Pl Tµν . (2.33)

Let us now deconstruct the two tensors Gµν and Tµν. In a FLRW spacetime described by the metric
(2.12), we obtain

G00 = 3
(

H2 +
K
a2

)

, Gij = −gij

(

H2 + 2
ä
a
+

K
a2

)

. (2.34)

In order to define the energy-momentum tensor of the Universe, we first consider the case of a
general imperfect fluid. Denoting with uµ := dxµ

dτ the 4-velocity (of the fluid relative to the observer),
ρ = Tµνuµuν the matter energy density, P = 1

3 Tµνtµν the isotropic pressure, qµ = −t α
µ Tαβuβ the

energy-flux vector, and Σµν = t α
〈µγ

β

ν〉Tαβ the symmetric and trace-free anisotropic stress tensor, the
energy-momentum tensor can be written in the form

Tµν = ρuµuν + Ptµν + 2q(µuν) + Σµν , (2.35)

where we also defined the tensor tµν := gµν + uµuν and used the notation t〈µν〉 = γ α
(µγ

β

ν)
tαβ −

1
3 γαβtαβγµν and t(µν) = 1

2 (tµν + tνµ). Now, for a perfect fluid that satisfies the requirements of
isotropy and homogeneity there exists a unique 4-velocity such that qµ = Σµν = 0, and the energy-
momentum tensor simplifies to

Tµ
ν = gµαTαν = (ρ + P) uµuν − P δ

µ
ν , (2.36)

For an observer comoving with the fluid we may choose uµ = (1, 0, 0, 0) and the energy-momentum
tensor becomes

Tµ
ν =









ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P









. (2.37)

Next, combining Eq. (2.34) with (2.37) we obtain the following two coupled, non-linear ordinary
differential equations:

H2 =

(

ȧ
a

)2

=
1
3

ρ − K
a2 +

Λ

3
, (2.38)

and

Ḣ + H2 =
ä
a
= −1

6
(ρ + 3P) +

Λ

3
. (2.39)

The first equation is called the Friedmann equation [16], while the second one takes its name after
Raychaudhuri [24]. Combining Eqs. (2.38) and (2.39) yields the “continuity equation"

ρ̇ + 3H(ρ + P) = 0 . (2.40)

The above equation can also be derived by the covariant conservation of the energy-momentum
tensor,

DµTµ
ν := ∂µTµ

ν + Γ
µ
αµTα

ν − Γ
α
µνTµ

α = 0 . (2.41)
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In order to solve Eq. (2.40), it proves useful to define the equation of state parameter

w :=
P
ρ

. (2.42)

Then, Eq. (2.40) takes on the form
d ln ρ

d ln a
= −3(1 + w) , (2.43)

which may be integrated to give
ρ ∝ a−3(1+w) . (2.44)

Now, neglecting the curvature and cosmological constant terms, the Friedmann equation (2.38) can
be integrated to give the time evolution of the scale factor

a(t) ∝

{

t
2

3(1+w) w 6= −1 ,
eHt w = −1 .

(2.45)

For a flat (K = 0) Universe dominated by non-relativistic or cold matter (w = 0) we have a(t) ∝ t2/3,
for a Universe dominated by radiation or relativistic matter (w = 1

3 ) we have a(t) ∝ t1/2 and
for a Universe where the cosmological constant dominates (w = −1) we have a(t) ∝ exp(Ht).
Furthermore, in a Universe where the spatial curvature dominates (w = − 1

3 ) we find a(t) ∝ t, while
for a Universe dominated by a scalar field (as is the case during inflation) the equation of state
parameter becomes2 w = −1 + 2ǫH/3 and the scale factor evolves as a(t) ∝ t1/ǫH .

Table 2.2: FLRW solutions for a flat universe dominated by radiation, matter or a cosmological con-

stant.

fluid equation of state parameter w ρ(a) a(t) a(τ)

cold matter 0 a−3 t2/3 τ2

radiation 1
3 a−4 t1/2 τ

spatial curvature − 1
3 a−2 t eτ

cosmol. constant −1 a0 eHt −τ−1

scalar field −1 + 2 ǫH
3 a−2ǫH t1/ǫH (−τ/ǫH)

−ǫH

In our Universe, the total energy density ρ and pressure P receive contributions from various
matter and energy species (dark energy, baryons, dark matter, photons, neutrinos, etc.),

ρ :=
∑

i

ρi , P :=
∑

i

Pi . (2.46)

For each different species ‘i’ we may define the present ratio of the energy density with respect to
the critical energy density

ρcrit := 3H2
0 (2.47)

2The parameter ǫH will be discussed in full detail in Chapter 3.
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as

Ωi :=
ρi

0

ρcrit
. (2.48)

The corresponding equation of state parameter becomes

wi :=
Pi

ρi
. (2.49)

Then, the Friedmann equation yields

H2 = H2
0

(

Ω
0
Λ
+ Ω

0
Ka−2 + Ω

0
ma−3 + Ω

0
r a−4

)

, (2.50)

with Ω0
K := −K/a2

0H2
0 . Today, the scalar factor is normalized to be a0 = a(t0) := 1 and we obtain

the consistency relation
Ω

0
Λ
+ Ω

0
K + Ω

0
m + Ω

0
r = 1 . (2.51)

Observations of the CMB from the Planck mission [1] constrain the above ratios to be Ω0
Λ
≃ 0.69

for the cosmological constant, Ω0
CDM ≃ 0.26 for cold dark matter, Ω0

b ≃ 0.05 for baryons (Ω0
m ≃

Ω0
CDM + Ω0

b), and Ω0
r ≃ 10−5 for the relativistic components. Finally, the Universe appears to be

flat, with Ω0
K = 0.000 ± 0.005 (see also Fig. 2.3).

Figure 2.3: 68.3%, 95.4%, and 99.7% confidence regions of the (Ωm, ΩΛ) plane in the ΛCDM

model from type Ia supernovae combined with the constraints from BAO and CMB. Credit: Ref. [25]
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2.2.4 Particles in Equilibrium

The CMB suggests that the early Universe was in local thermal equilibrium. As we outlined in Sec-
tion 2.1, the expansion of the Universe resulted in non-equilibrium dynamics which allowed mas-
sive particles to acquire their cosmological abundances. A species i achieves thermal equilibrium
when it is both in kinetic and chemical equilibrium. Kinetic equilibrium occurs when the particles of
the species exchange energy and momentum in an efficient way. This results in a state of maximum
entropy. Thus, in phase space, the distribution functions of the species obey the Fermi-Dirac (FD)
and Bose-Einstein (BE) statistics

f (|p|) = 1
e(E(|p|)−µ)/T ± 1

(2.52)

where + is for fermions and − for bosons. The chemical potential µ is defined as the derivative of
the entropy S with respect to the number of particles N, at fixed volume V and energy U,

µ = −T
(

∂S
∂N

)

U,V
, (2.53)

and it can be used to indicate which way a reaction proceeds. Chemical equilibrium is achieved
when the sum of the chemical potentials of the reacting particles is equal to the sum of the chemical
potentials of the produced particles. For processes of the form 1 + 2 ↔ 3 + 4 this translates to

µ1 + µ2 = µ3 + µ4 . (2.54)

Now, because of homogeneity, the distribution function is independent of the position x and due
to isotropy it depends only on the magnitude of the momentum |p|. Leaving the time dependence
implicit, the number density ni and the energy density ρi for a species i with gi internal degrees of
freedom are given by

ni = gi

∫

d3 p
(2π)3 fi(|p|) , ρi = gi

∫

d3 p
(2π)3 fi(|p|)Ei(|p|) , (2.55)

where
Ei(|p|) =

√

|p|2 + m2
i . (2.56)

At early times, the chemical potentials of all particles were small enough to be neglected. We
may consider two limits. In the relativistic limit (Ti ≫ mi), we have

ni = gi

{

ζ(3)
π2 T3

i (BE)
3
4

ζ(3)
π2 T3

i (FD)
, ρi = gi

{

π2

30 T4
i (BE)

7
8

π2

30 T4
i (FD)

, (2.57)

where ζ(3) ≃ 1.20206. In the non-relativistic limit (Ti ≪ mi) bosons and fermions are indistin-
guishable and can be described by the Maxwell-Boltzmann distribution

ni = gi

(

miTi

2π

)3/2

e−mi/Ti , ρi = nimi . (2.58)

Notice that as the temperature falls below the mass of the particle, the number density and en-
ergy density of the species drop exponentially. This is interpreted as annihilations of particles and
antiparticles. At higher energies these annihilations are balanced by the production of particle-
antiparticle pairs but as temperature drops the available energy of the thermal bath is inadequate
for pair production.
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Let us now consider the Universe during radiation domination. The total radiation energy den-
sity is

ρrad = g∗
π2

30
T4 , g∗ =

∑

i=bosons

gi

(

Ti

T

)4

+
7
8

∑

i=fermions

gi

(

Ti

T

)4

, (2.59)

where T is the photon (CMB) temperature. For high temperature (T ≥ 300 GeV) we can include
all the SM degrees of freedom and we get g∗ = 106.75. In a radiation dominated Universe the
Friedmann equation has the form

H2 = g∗
π2

90
T4 . (2.60)

We can scale out the effect of the expansion by introducing the number density in a comoving
volume. We take as comoving volume the entropy density s, defined as

s =
2π2

45
g∗sT3 , g∗s =

∑

i=bosons

gi

(

Ti

T

)3

+
7
8

∑

i=fermions

gi

(

Ti

T

)3

. (2.61)

For very high temperature all the relativistic species are in thermal equilibrium and therefore g∗s =
g∗. We are able to use the total entropy to define the comoving volume since it is conserved during
the expansion, s ∝ a−3. Thus, the comoving number density or yield is defined as

Y :=
n
s

. (2.62)

The yield is a useful quantity since it scales out the expansion of the Universe. It is also a di-
mensionless variable and can therefore be used to numerically solve the Boltzmann equation (see
Chapter 5).

2.3 Problems of the Big Bang Theory and their Inflationary Solutions

Despite its successes, the Big Bang Theory model is endowed with some problems which are mostly
connected to the initial conditions of the Universe. In this Section, we will focus on the horizon and
flatness problems and we will see how these problems are naturally solved if one assumes that the
Universe underwent a period of inflationary expansion in its early stages.

2.3.1 The Horizon Problem

The Universe has existed for a finite amount of time, which means that photons have travelled a
finite distance during this time. The propagation of light in an expanding Universe is best studied
using conformal time, also called the comoving particle horizon,

∆τ =

∫ t

ti

dt
a

=

∫ a

ai

da
aȧ

=

∫ ln a

ln ai

d ln a (aH)−1 , (2.63)

where ai := 0 corresponds to the Big Bang singularity. Furthermore, the quantity (aH)−1 is called
the comoving Hubble radius and plays a crucial role in inflation. In an isotropic spacetime, we can
define the coordinate system so that photons are travelling towards us (dθ = dφ = 0). Then, the
line element becomes

ds2 = a2(τ)
[

−dτ2 + dr2] , (2.64)



18 Chapter 2. The Standard Model of Cosmology

and since light travels along null geodesics, ds2 = 0, its path is determined by

∆r(τ) = ±∆τ , (2.65)

where the plus (minus) sign corresponds to outgoing (incoming) photons.

For a Universe dominated by a fluid with a constant equation of state parameter w, we obtain

(aH)−1 = H−1
0 a

1
2 (1+3w) . (2.66)

Matter and radiation satisfy the strong energy condition, (1 + 3w) > 0, so it used to be assumed
that the comoving Hubble radius grows monotonically as the Universe expands. Using (2.66) in
(2.63), we obtain

τ − τi =
2H−1

0

(1 + 3w)

[

a
1
2 (1+3w) − a

1
2 (1+3w)
i

]

. (2.67)

We see that the integral in (2.63) is dominated by the upper limit, while early times give vanishing
contributions

τi =
2H−1

0

(1 + 3w)
a

1
2 (1+3w)
i

ai→0−−−−→
w>−1/3

0 . (2.68)

Measurements from the CMB suggest that the Hubble radius was roughly 100 Mpc at that time,
which corresponds to around 1◦ in the sky. This implies that spots in the CMB separated by more
than 1◦ cannot have been in causal contact since they have non-overlapping past light cones. Nev-
ertheless, the CMB radiation is extremely homogeneous and isotropic, up to tiny fluctuations of the
order of δT/T ≃ 10−5, and consists of at least 104 disconnected patches of space which apparently
did not have enough time to communicate. This is the horizon problem.

A simple solution to the horizon problem presents itself if we postulate a phase of decreasing
Hubble radius in the early Universe,

d
dt

(aH)−1
< 0 . (2.69)

This means we need a fluid which violates the strong energy condition, that is, 1 + 3w < 0. Now,
the integral in (2.63) is dominated by the lower limit,

τi =
2H−1

0

(1 + 3w)
a

1
2 (1+3w)
i

ai→0−−−−→
w<−1/3

−∞ , (2.70)

and the Big Bang singularity is pushed to negative conformal time (see Fig. 2.4). The time τ = 0
now becomes a transition point between the inflationary era and the standard Big Bang evolution.
This transition point is now replaced by the period of reheating. All points in the CMB are now
causally connected since they have overlapping past light cones.

2.3.2 The Flatness Problem

Let us now see how inflation also solves the flatness problem.

The Friedmann equation (with zero cosmological constant),

H2 =
1
3

ρ − K
a2 , (2.71)
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Figure 2.4: The horizon problem can be solved if we assume an inflationary period before τ = 0
where the Hubble sphere is shrinking instead of expanding (as is the case in the standard Big Bang

evolution until dark energy takes over at a ∼ 0.5). All points in the CMB are now causally connected

since they have overlapping past light cones. Credit: Cosmology lectures by Daniel Baumann

can be written as

1 − Ω(t) =
−K
(aH)2 . (2.72)

Notice that Ω(t) now depends on time. For some earlier time ti we can write

1 − Ω(ti) = [1 − Ω(t0)]
H2(t0)a2(t0)

H2(ti)a2(ti)

= [1 − Ω(t0)]

(

ȧ(t0)

ȧ(ti)

)2

. (2.73)

In a Universe dominated by matter, the scale factor grows as a ∝ t2/3. Given the current age of the
Universe t0 ≃ 4.3 × 1017s, at the time of radiation-matter equality, a ∝ t1/2, we obtain

1 − Ω(trec) = [1 − Ω(t0)]

(

t0

trec

)−2/3

< 10−4 , (2.74)

where trec ≃ 2.0 × 1012s. This implies that at recombination the Universe was very close to being
flat. Now, during radiation domination the scale factor grows as a ∝ t1/2. Going back to the time of

http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
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Big Bang Nucleosynthesis, tBBN ∼ 102s, we obtain

1 − Ω(tBBN) = [1 − Ω(t0)]

(

t0

tBBN

)−1

< 10−17 . (2.75)

If we go even further back to the Planck time, tP ∼ 5 × 10−44s, we find

1 − Ω(tP) < 10−64 . (2.76)

All of this discussion shows that the density parameter must have been extremely close to “unity"
in the early Universe despite the fact that the critical value Ω = 1 is an unstable fixed point. This is
the so-called flatness problem. During inflation, we will see that the Hubble parameter HI is almost
constant, which means the scale factor grows as

a(t) ≃ aend exp [HI (t − tend)] = exp [−N(t)] , (2.77)

where tend is the time when inflation ends. If inflation lasted around N(t) ≃ 60, then the exponen-
tially decreasing value of Ω is driven towards unity and will remain close to it even after inflation
ends

1 − Ω ∝ e−2N → 0 . (2.78)

The above discussion clearly demonstrates why inflation is generally considered as the natural
solution to the horizon and flatness problems.
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Chapter 3

Inflation

The theory of cosmic inflation was originally advocated as a solution to the flatness and hori-
zon problems [26, 27] of the Big-Bang cosmology. When treated quantum-mechanically, inflation
can also provide a mechanism for the generation of the perturbations that have resulted in the
anisotropies observed in the CMB [28–31]. It is usually formulated in terms of a single scalar field,
minimally coupled to gravity, whose potential energy dominates over its kinetic energy for a short
period of time and drives the accelerated expansion of the universe. This phase can be most easily
achieved if the scalar potential V(φ) has a relatively flat plateau and the scalar field can slowly roll
down until it reaches the minimum of the potential.

This chapter is organized as follows: In the next section, we present the simplest scenario that can
realize inflation: one real scalar field minimally coupled to gravity. Then, in Section 3.2, we study
the scalar and tensor perturbations in the minimal case and derive the corresponding power spectra
and spectral indices in terms of slow-roll parameters. In Section 3.2.5, we present an example of
chaotic inflation from a polynomial potential which shows that minimally coupled models are in
tension with observations. We are thus led to explore non-minimally coupled models. These can be
studied in the general context of scalar-tensor theories of gravity, which we review in Section 3.3.

3.1 Minimal Inflation

3.1.1 Scalar Field Dynamics

Let us consider a real scalar field, hereby called the inflaton, which is governed by the Lagrangian

L =
1
2

gµν∂µφ∂νφ − V(φ) , (3.1)

where V(φ) is the inflaton potential, which we leave unspecified for the moment. By minimally
coupling the inflaton to gravity, we obtain the following action1

S =

∫

d4x
√

−g
[

R
2
− 1

2
gµν∂µφ∂νφ − V(φ)

]

= SEH + Sφ . (3.2)

By varying Sφ with respect to the metric, we obtain the energy-momentum tensor

T(φ)
µν = − 2√−g

δSφ

δgµν
= ∂µφ∂νφ − gµν

(

1
2

∂σφ∂σφ + V(φ)

)

. (3.3)

1Henceforth, we use units where MPl = 1.
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Next, by varying Sφ with respect to the scalar field we obtain the inflaton equation of motion

δSφ

δφ
=

1√−g
∂µ

(√

−g ∂µφ
)

+
dV(φ)

dφ
= 0 . (3.4)

In a FLRW Universe described by the metric (2.12) and assuming a homogeneous field φ(t, x) =:
φ(t), the scalar energy-momentum tensor describes a perfect fluid with

T0
0 = ρφ ⇒ ρφ =

1
2

φ̇2 + V(φ) , (3.5)

Ti
j = −Pφδi

j ⇒ Pφ =
1
2

φ̇2 − V(φ) . (3.6)

The equation of state parameter for the inflaton has the form

wφ =
Pφ

ρφ
=

1
2 φ̇2 − V(φ)
1
2 φ̇2 + V(φ)

. (3.7)

As one can see, a scalar field can produce negative pressure (wφ < 0) and lead to an accelerated
expansion (wφ < −1/3) if its potential energy V dominates over its kinetic energy 1

2 φ̇2. The Fried-
mann equation (2.38) now reads (assuming a flat Universe and zero cosmological constant)

H2 =
1
3

[

φ̇2

2
+ V

]

. (3.8)

Taking the time derivative of (3.8), 2HḢ = 1
3 [φ̇φ̈ + V ′φ̇], and using Ḣ = −

(

ρφ + Pφ

)

/2, we obtain

Ḣ = −1
2

φ̇2 . (3.9)

Finally, Eq. (3.4) gives the Klein-Gordon equation

φ̈ + 3Hφ̇ + V ′ = 0 . (3.10)

3.1.2 Slow-roll Approximation

Let us rewrite the Raychaudhuri equation (2.39) as

ä
a
= H2(1 − ǫH) , (3.11)

where

ǫH := − Ḣ
H2 = 2

(

H′(φ)
H(φ)

)2

=
3φ̇2

φ̇2 + 2V
(3.12)

is the first Hubble slow-roll parameter (HSRP) [32]. Equation (3.11) shows that accelerated expansion
can occur if ǫH < 1, while inflation ends exactly when ǫH = 1. Furthermore, the limit ǫH → 0
corresponds to de Sitter space and occurs when the potential energy of the inflaton dominates over
its kinetic energy,

V(φ) ≫ φ̇2 . (3.13)
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For inflation to last sufficiently long enough in order to solve the problems of the Big Bang theory
described in Sec. 2.3, we must also impose that the second time derivative of φ be small, that is,

|φ̈| ≪ |3Hφ̇|, |V ′| . (3.14)

This behaviour can be encoded in the second HSRP,

ηH = − φ̈

Hφ̇
= −1

2
Ḧ

ḢH
= 2

H′′(φ)
H(φ)

. (3.15)

In general, one can define a hierarchy of HSPRs [32]

nβH = 2

(

(H′)n−1 H(n+1)

Hn

) 1
n

. (3.16)

Within the slow-roll approximation, the Friedmann (3.8) and Klein-Gordon (3.10) equations become

H2 ≈ 1
3

V(φ) (3.17)

φ̇ ≈ − V ′

3H
. (3.18)

In order to realize the slow-roll conditions (3.13) and (3.14), one usually considers an inflaton
potential with a relatively flat part where the scalar field can slowly roll down towards the mini-
mum and give rise to the quasi-exponential growth of the scale factor (see Fig. 3.1) (see [33–36] for
reviews on inflation). After inflation ends, the scalar field rapidly oscillates around the minimum
of the potential and eventually decays to other particles (including the Standard Model ones), in a
process dubbed reheating (see [37–39] for reviews on reheating).

The shape of the potential can be encoded in the potential slow-roll parameters (PSRPs). The first
two are defined as

ǫV :=
1
2

(

V ′

V

)2

, (3.19)

ηV :=
V ′′

V
, (3.20)

while higher-order PSRPs are given by the hierarchy [32]

nβV =

(

(V ′)n−1 V(n+1)

Vn

) 1
n

. (3.21)

The HSPRs can be related to the PSRPs through the equations (3.8)–(3.10). One finds

ǫV = ǫH

(

3 − ηH

3 − ǫH

)2

, (3.22)

ηV =
√

2ǫH
η′

H

3 − ǫH
+

(

3 − ηH

3 − ǫH

)

(ǫH + ηH) (3.23)
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Figure 3.1: In the standard picture of inflation, the scalar field rolls down its potential, which generally

needs to have a relatively flat plateau in order for the required 50 − 60 e-folds to occur. Inflation ends

when ǫH(φe) = 1. Then, the inflaton oscillates around the minimum of the potential and fuels the

reheating era.

These equations are exact, but in the slow-roll regime we can approximate them using a Taylor
expansion as [32]

ǫH ≈ ǫV (3.24)

ηH ≈ ηV − ǫV . (3.25)

The above relations are usually assumed to be sufficient for the determination of the inflationary ob-
servables. However, as we will see in Chapter 9, the increasing sensitivity of the experiments forces
us to be more careful in our considerations regarding what approximation to use. There, we will
see that keeping higher-order terms in the Taylor expansion, or using other types of approximations
altogether can lead to considerably different results.

Finally, in the slow-roll approximation the number of e-folds can be written as

N(φ) =

∫ tend

t
Hdt =

∫ φend

φ

H
φ̇

dφ ≈
∫ φ

φend

(

V
V ′

)

dφ , (3.26)

or, using the slow-roll parameters, as

N(φ) =

∫ φ

φend

dφ√
2ǫH

≈
∫ φ

φend

dφ√
2ǫV

. (3.27)

As we saw in Section 2.3, the flatness and horizon problems can be solved if we take the number of
e-folds to be around N ∼ 60 (see also [40, 41]), a number consistent also with the generation of the
CMB anisotropies.
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3.2 Cosmological Perturbations

Perhaps the most appealing feature of the theory of inflation is that, when treated quantum-mechanically,
it can produce the small inhomogeneities of order 10−5 observed in the CMB. The generation of
these inhomogeneities is best studied with the help of the cosmological perturbation theory. Thus
far, we have only examined the classical FLRW evolution of the inflationary background. Going to
the quantum theory, we will have to consider quantum fluctuations of the fields.

3.2.1 The Scalar-Vector-Tensor Decomposition

During inflation, perturbations around the homogeneous classical background solutions for the
metric ḡµν(t) and the inflaton φ̄(t) are defined as

δgµν := gµν(τ, x)− ḡµν(τ) , δφ := φ(τ, x)− φ̄(τ) . (3.28)

Due to the underlying symmetries of the spatially flat, homogeneous and isotropic background
space-time, general metric and energy-tensor perturbations can be decomposed into independent
scalar (S), vector (V), and tensor (T) components. The SVT decomposition theorem then states that
these perturbations will evolve independently (at linear level).

For the perturbed metric we have

δgµν := δSgµν + δV gµν + δTgµν . (3.29)

Now, even though we have split our fields into background and perturbed quantities and are in
a position to study the three types of perturbations individually, we have not yet considered how
a change of coordinates or the gauge choice affects the perturbations. For example, an infinitesimal
coordinate transformation

xµ → x̃µ = xµ + ξµ (3.30)

leads to a change in the perturbations. To demonstrate this fact, let us consider an unperturbed
homogeneous FLRW Universe with energy density ρ = ρ(τ) and perform a coordinate transforma-
tion of the conformal time τ → τ̃ = τ + ξ0(τ, x). Then, the perturbed energy density will transform
as [42]

δρ → δ̃ρ = δρ + ρ′ξ0(τ, x) . (3.31)

Therefore, even though we started with δρ = 0, by transforming to a new coordinate system we
ended up with perturbations in the energy density, δ̃ρ = ρ′ξ0(τ, x) 6= 0, which are not physical. In
order to avoid such ambiguities and get rid of fictitious extra modes, one can either fix a specific
gauge or more ideally work with gauge-invariant combinations of perturbations.

Using the SVT decomposition, it can be shown that the perturbed line element takes the form [43,
44]

ds2 = a2(τ)
{

− (1 + 2A)dτ2 − 2 (∂iB)dxidτ +
[

(1 + 2ψ) δij + 2∂i∂jE + hij
]

dxidxj
}

. (3.32)

Notice that we have not included vector perturbations since they are not produced during scalar
field inflation and in any case decay fast during the evolution of the Universe. For the scalar and
tensor perturbations, which correspond to density fluctuations and gravitational waves in the late
Universe, we have a total number of ten degrees of freedom. Four of these can be eliminated
through a coordinate transformation and we end up with six physical degrees of freedom. Tensor
perturbations are gauge invariant by construction, but scalar perturbations behave non-trivially
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under a change of coordinates. In the following we will focus only on scalar perturbations since the
results for the tensor perturbations can be obtained in a similar manner.

There are two scalar gauge transformations

τ → τ̃ = τ + ξ0 and xi → x̃i = xi + δij∂jξ . (3.33)

Under these, the scalar degrees of freedom A, B, ψ and E transform as

A → Ã = A +Hξ0 +
(

ξ0)′ , ψ → ψ̃ = ψ +Hξ0 ,

B → B̃ = B + ξ0 − ξ ′ , E → Ẽ = E + ξ . (3.34)

where a prime now denotes differentiation with respect to the conformal time τ and H := a′/a =
aH. By taking linear combinations of the scalar degrees of freedom we can construct the gauge-
invariant Bardeen potentials [45]

ΦB := A − 1
a

[

a
(

B − E′)]′ and ΨB := ψ −H
(

B + E′) . (3.35)

At this point, it is useful to also introduce the Mukhanov-Sasaki variable [46, 47]

v := a
(

δφgi +
φ̄′

HΦB

)

, (3.36)

where δφgi is the gauge-invariant scalar field perturbation constructed with the help of (3.34)

δφgi := δφ − φ̄′ (B + E′) . (3.37)

Under (3.33), δφgi transforms as
δφ → δ̃φ = δφ + ξ0φ̄′ . (3.38)

Next, we wish to derive an equation of motion for v(τ, x). By expanding the action (3.2) around a
FLRW background up to second order in the perturbations, one finds [48]

δ2S =
1
2

∫

dτd3x
(

v′2 − ∂iv∂jvδij +
z”
z

v2
)

=

∫

dτd3xLeff , (3.39)

where
z :=

a
H φ̄′ =

a
H

˙̄φ . (3.40)

We can also rewrite the Mukhanov-Sasaki variable v as

v = zR , (3.41)

with
R = ψ +H δφ

φ̄′ = ψ +
H
˙̄φ

δφ . (3.42)

R is called the comoving curvature perturbation and is an important quantity since for adiabatic per-
turbations2 it is conserved on large scales. This means that the value of R computed at horizon
crossing (k = aH) will not evolve on super-horizon scales (k ≪ aH) and remain unaltered until
later times. Geometrically, R measures the spatial curvature of comoving hypersurfaces (surfaces
of constant φ). During slow-roll inflation and also on super-horizon scales, R in fact coincides with

2Adiabatic perturbations normally occur during single-field inflation, which is of interest to us in this thesis.
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the curvature perturbation on uniform-density hypersurfaces

−ζ := ψ +
H
˙̄ρ

δρ ≃ ψ +
H
˙̄φ

δφ = R . (3.43)

Figure 3.2: The evolution of curvature perturbations during and after inflation. The comoving horizon

(aH)−1
becomes smaller during inflation and then grows during the standard Big Bang evolution.

This means that the comoving scales k−1 cross the horizon twice at different epochs in our observable

universe. Since the curvature perturbations R are almost frozen during the superhorizon evolution,

we can directly relate the predictions made at horizon exit (high energies) to the observables after

horizon re-entry (low energies). Credit: Cosmology lectures by Daniel Baumann

3.2.2 Quantization of Fluctuations

We are now in a position to derive the primordial power spectrum of scalar perturbations. In order
to do so, we promote the scalar field v into an operator and quantize it in a canonical way. The
conjugate momentum is given by

πv :=
∂Leff

∂v′
= v′ (3.44)

while the commutation relations read
[

v̂(x, τ), v̂(x′, τ′)
]

τ=τ′ =
[

π̂v(x, τ), π̂v(x
′, τ′)

]

τ=τ′ = 0
[

v̂(x, τ), π̂v(x
′, τ′)

]

τ=τ′ = iδ(3)
(

x − x′
)

. (3.45)

The field operator v̂ can be decomposed in Fourier space into creation and annihilation operators

v̂ =
1

2 (2π)3/2

∫

d3k
(

âkv∗k (τ)e
ik·x + â†

kvk(τ)e
−ik·x

)

. (3.46)

http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
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Since v is a real field, we have vk = v∗−k. The creation and annihilation operators satisfy the com-
mutation relations

[âk, âk′ ] =
[

â†
k , â†

k′

]

= 0 ,

W [vk, v∗k ]×
[

âk, â†
k′

]

= δ(3)
(

k − k′) , (3.47)

where the Wronskian W is given by

W [vk, v∗k ] := i
(

v∗k v′k − vk(v
∗
k )

′) = 1 = 〈v|v〉 . (3.48)

Now, by varying the action (3.39) in Fourier space, we obtain what is known as the Mukhanov-
Sasaki equation [46, 47]

v′′k +

(

k2 − z′′

z

)

vk = 0 , (3.49)

with the mode- and time-dependent frequency

ωk(τ) := k2 − z′′(τ)
z(τ)

. (3.50)

During slow-roll inflation, the HSPR parameter ǫH is assumed to be constant and the conformal
time τ can be integrated to give

τ =

∫

dτ

a
=

∫

da
a2H

=
−1
aH

+

∫

ǫH

a2
da
H

, (3.51)

or, at leading order,

τ = − 1
aH

1
1 − ǫH

≃ −1 + ǫH

aH
. (3.52)

The above result can be extended to any order by repeated integration [49]3. For example, up to
third order we have

τ = − 1
aH

[

1 + ǫH + 3ǫ2
H − 2ǫHηH + 15ǫ3

H − 20ǫ2
HηH + 4ǫHη2

H + ǫHζ2
H

]

. (3.53)

Now, in the de Sitter limit, ǫH → 0, the term z′′/z in (3.49) simplifies to

z′′

z
= 2 (aH)2 =

2
τ2 . (3.54)

Next, the vacuum state is defined as
âk|0〉 = 0 , (3.55)

for every mode k, and is identified with the Minkowski vacuum of a comoving observer in the far
past (i.e. when all comoving scales were well inside the Hubble horizon), τ → −∞, or |kτ| ≫ 1 or
k ≫ aH. In this sub-horizon limit, the Mukhanov-Sasaki equation reduces to

v′′k + k2vk = 0 , (3.56)

which is just the equation describing a simple harmonic oscillator, and has two independent so-
lutions, namely vk ∝ e±ikτ. Positivity of the normalization condition 〈v|v〉 selects the minus sign,

3The slow-roll parameters we use here are related to those of Ref. [49] as ǫ1 = ǫH , ǫ2 = 2ǫH − 2ηH , ǫ2ǫ3 = 4ǫ2
H −

6ǫHηH + 2ζ2
H .
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while proper normalization (〈v|v〉 = 1) results in the asymptotic boundary condition

lim
τ→−∞

vk =
e−ikτ

√
2k

, (3.57)

also known as the Bunch-Davies boundary condition [50]. Now, again in the de Sitter limit, the
Mukhanov-Sasaki has the form

v′′k +

(

k2 − 2
τ2

)

vk = 0 , (3.58)

which has an exact solution

vk = α
e−ikτ

√
2k

(

1 − i
kτ

)

+ β
eikτ

√
2k

(

1 +
i

kτ

)

. (3.59)

The boundary conditions (3.48) and (3.57) fix α = 1, β = 0 and we end up with the unique Bunch-
Davies mode functions

vk =
e−ikτ

√
2k

(

1 − i
kτ

)

. (3.60)

Finally, in the super-horizon limit (k ≪ aH or k|τ| → 0) we find

lim
k|τ|→0

vk = − i√
2k3/2τ

. (3.61)

In this case, we can neglect the k2 in (3.49) and the growing modes behave as

vk ∝ z (3.62)

The above relation and Eq. (3.41) imply that the comoving curvature scalar remains constant during
the super-horizon evolution

R =
v
z
= const. (3.63)

This feature is of great importance for the estimation of the power spectrum of the fluctuations.
It means that once the modes cross the horizon they “freeze" and are unaffected by the details of
the reheating phase. This fact allows us to connect the predictions made at horizon exit with the
observable perturbations at horizon re-entry.

3.2.3 Power Spectra and Spectral Indices

The comoving curvature scalar has the Fourier transform

R̂ (τ, x) =
1

(2π)3/2

∫

d3kR̂k(τ)e
ik·x , (3.64)

with

R̂k(τ) =
vk(τ)

z
âk +

v∗k (τ)
z

â†
−k . (3.65)

Then, the power spectrum of the comoving curvature perturbations PR is defined via the two-point
correlation function in k-space

〈0|R̂k(τ)R̂†
k′ |0〉 =:

2π2

k3 PRδ(3)
(

k − k′) , (3.66)
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and is related to vk and z by

PR =
k3

2π2
|vk(τ)|2

z2 . (3.67)

Let us now move away from pure de Sitter space and see what happens during the slow-roll regime
ǫH ≪ 1. We begin by writing the z′′/z term in (3.49) as

z′′

z
= 2a2H2

(

1 + ǫH − 3
2

ηH +
1
2

η2
H − 1

2
ǫHηH +

1
2

1
H

ǫ̇H − 1
2

1
H

η̇H

)

. (3.68)

Using (3.52), we find during slow-roll

z′′

z
≃ 2 + 2ǫH − 3ηH

τ2 (1 − ǫH)
2 ≃ 2 + 6ǫH − 3ηH

τ2 , (3.69)

which is of the form
z”
z

=
ν2

S − 1/4
τ2 , (3.70)

with
ν2

S =
9
4
+ 6ǫH − 3ηH ⇒ νS =

3
2
+ 2ǫH − ηH +O(2) . (3.71)

This means that the Mukhanov-Sasaki equation (3.49) has a general solution in terms of Hankel
functions of the first and second kind H(1,2)

νS (−kτ) that reads

vk(τ) =

√
π

2
exp

[

i
(

νS +
1
2

)

π

2

]√
−τ H(1)

νS (−kτ) , (3.72)

where
[

H(1)
νS (−kτ)

]∗
= H(2)

νS (−kτ). The early time limit of the Hankel functions is

lim
τ→−∞

H(1,2)
νS (−kτ) =

√

−2
πkτ

exp
[

∓i
(

kτ +
π

4
(2νS + 1)

)]

. (3.73)

Having specified and normalized the mode functions in the infinite past, we now take the late time
limit, τ → 0. Using

iH(1)
νS (z) ≃ Γ(νS)

π

( z
2

)−νS
, as z → 0 , (3.74)

the amplitude |vk(τ)| in the super-horizon limit is given by

|vk(τ)| ≃ C(νS)
1√
2k

(

k
aH

)−νS+1/2

, C(νS) := 2νS−3/2 Γ(νS)

Γ(3/2)
(1 − ǫH)

νS−1/2 . (3.75)

During slow roll, we have νS ≃ 3/2 and we can also approximate C(νS) ≃ 1. Then, by substituting
z = aφ̇/H, we finally obtain the scalar power spectrum

PR(k) ≃
(

H
2π

)2(H
φ̇

)2( k
aH

)3−2νS

≃
(

H
2π

)2(H
φ̇

)2
∣

∣

∣

∣

∣

k=aH

. (3.76)

The above result is first order in the slow-roll approximation. It is measured to be PR(k∗) ≃ 2.14 ×
10−9 [51], with k∗/(a∗H∗) = 1, and it is almost scale invariant. Deviation of the scalar power
spectrum from scale invariance is measured by the scalar spectral index (also known as primordial
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tilt) nS, defined as

nS := 1 +
d lnPR(k)

d ln k
= 1 − 4ǫH + 2ηH = 1 − 6ǫV + 2ηV . (3.77)

Exact scale invariance corresponds to nS = 1. The measured value is nS = 0.968 ± 0.006 [51].

Primordial quantum fluctuations excite also the graviton and lead to primordial gravitational
waves. The quantity of interest for tensor perturbations is

hij (τ, x) =
1

(2π)3/2

∫

d3k
(

ĥ+k ǫ+ij (k) + ĥ×k ǫ×ij (k)
)

. (3.78)

Gravitational waves have two polarizations ǫ+ij and ǫ×ij . Then, the canonically normalized field is
defined as

v̂+/×
k = zĥ+/×

k = aĥ+/×
k , (3.79)

with z = a. Thus, we simply have

z′′

z
=

a′′

a
= (aH)2 (2 − ǫH) =

2 − ǫH

τ2 (1 − ǫH)
2 =

2 + 3ǫH

τ2 +O(2) . (3.80)

The tensor power spectrum is then given by

Ph(k) := 4P+/×
h (k) =

4
a2

k3

2π2 |vk(τ)|2 = 2
H2

π2

(

k
aH

)3−2νT

= 2
H2

π

∣

∣

∣

∣

∣

k=aH

, (3.81)

where we used

ν2
T = τ2 a”

a
+

1
4
=

9
4
+ 3ǫH ⇒ νT =

3
2
+ ǫH +O(2) . (3.82)

For tensors, the deviation from scale invariance is usually described in terms of the tensor spectral
index

nT :=
d lnPh(k)

d ln k
= 3 − 2νT = −2ǫH = −2ǫV , (3.83)

where now nT = 0 corresponds to exact scale invariance. Another useful quantity is the tensor-to-
scalar ratio r, defined as

r =
PR
Ph

= 16ǫH = 16ǫV . (3.84)

At first order in slow roll, we have the so-called consistency relation

r = −8nT . (3.85)

Finally, if the spectral indices nS(k) and nT(k) are scale dependent, we quantify this effect by the
running of the spectral indices

αS :=
dnS

d ln k
and αT :=

dnT

d ln k
. (3.86)
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3.2.4 Higher-order Techniques

While the above derivations for the expressions of the scalar and tensor power spectra (Eqs. (3.91)
and (3.81)) are quite simple, they are not very precise. The reason for that is that the high and low-
frequency solutions of the Mukhanov-Sasaki equation (Eqs. (3.73) and (3.74)) are extrapolated to the
intermediate regime of the horizon crossing (k = aH) where they were not meant to be applied. In
the near future, experiments are expected to measure the inflationary observables with increasing
accuracy (the CORE satellite will be able to lower the detection limit of the tensor-to-scalar ratio
down to 10−3 [52]). This means the theoretical predictions must also be on par.

A possible strategy in this direction would be to improve the matching of the short and long
wavelength solutions by seeking a solution in the intermediate region k ∼ aH and then match this
solution against the other two. To gain a better insight into this situation, let us write z′′/z and a′′/a
again in the exact forms

z′′

z
= 2a2H2

(

1 + ǫH − 3
2

ηH +
1
2

η2
H − 1

2
ǫHηH +

1
2

1
H

ǫ̇H − 1
2

1
H

η̇H

)

, (3.87)

a′′

a
= 2a2H2

(

1 − 1
2

ǫH

)

. (3.88)

The derivatives of the first two slow-roll parameters ǫH and ηH are given by

ǫ̇H

H
= ǫ2

H − 2ǫHηH , (3.89)

η̇H

H
= ǫHηH − ζ2

H , (3.90)

where ζ2
H ∼ O

(

ǫ2
H, η2

H, ǫHηH
)

. We can see that they are of second order in the slow-roll parame-
ters. Since in the leading order slow-roll approximation the slow-roll parameters are assumed to
be small, the derivatives of ǫH and ηH are approximately zero and are therefore treated as constant.
Using τ ≃ − (1 + ǫH) /aH and the small argument approximation for the Hankel functions, Stew-
art and Lyth [53] computed the first-order slow-roll corrections to the scalar power spectrum, which
reads

PR(k) ≃ [1 + (4α − 2) ǫH − 2αηH ]

(

H
2π

)2(H
φ̇

)2
∣

∣

∣

∣

∣

k=aH

(3.91)

where α ≡ (2 − ln 2 − γ) ≃ 0.729637 and γ ≃ 0.577216 is the Euler-Mascheroni constant [54].

At next-to-leading order, the slow-roll parameters cannot be treated as constant and the Han-
kel solution is no longer valid. Stewart and Gong [55] have proposed an alternative approach,
still within the slow-roll approximation. Instead of replacing z′′/z in Eq. (3.87) with a constant
divided by τ2 as is usually done in the original slow-roll approximation, they choose the ansatz
z = τ−1 f (ln τ). The Mukhanov-Sasaki equation now contains an additional term that can be treated
as a homogeneity. Then, the solution for vk can be found using Green’s method. The integral in the
expression for vk can then be perturbatively expanded up to any order in slow-roll parameters.
We will present this method in detail in Chapter 9 where we will compute higher-order correc-
tions to the inflationary observables in the context of scalar-tensor theories. We refer the Reader
to [54, 56–72] for various extensions and applications of this method and to [49, 73–85] for other
related methods.
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3.2.5 Example: chaotic inflation from a polynomial potential

As an application of the previously derived results, let us consider single-field inflation from a
polynomial potential and see what predictions for the observables we can obtain. The potential is
given by

V(φ) = bnφn . (3.92)

The first two PSRPs defined in Eqs.(3.19)–(3.20) are easily computed to be

ǫV =
n2

2
1
φ2 , (3.93)

ηV = n (n − 1)
1
φ2 . (3.94)

In the first-order slow-roll approximation, inflation ends when ǫH ≃ ǫV = 1. We can solve this
equation to obtain the value of the scalar field at the end of inflation

φend =
n√
2

. (3.95)

The observables are usually computed at the time when the modes of interest crossed the horizon.
This time corresponds to around 50–60 e-folds before the end of inflation. Using the e-fold integral
(3.26) we find

N =
φ2

i

2n
− n

4
. (3.96)

We can invert this relation and express the value of the field φi as a function of the number of e-folds
N. Then, using (3.77) we find for the scalar spectral index

nS = 1 − 2n + 4
4N + 1

, (3.97)

while from (3.84) the tensor-to-scalar ratio is

r =
16n

4N + 1
. (3.98)

Let us now consider N = 60 and take the quadratic potential V = 1
2 m2φ2. We find

nS ≃ 0.97 , r ≃ 0.13 . (3.99)

Similarly, for the quartic potential V = 1
4 λφ4 we find

nS ≃ 0.95 , r ≃ 0.26 . (3.100)

Comparing these values with the latest results from the Planck Collaboration (Fig. 3.3), we see that
both models are essentially ruled out since they predict a tensor-to-scalar ratio which is too large.

3.3 Scalar-Tensor Theories

Over the years a vast plethora of inflationary models have been proposed, originating from di-
verse physics frameworks. Recently, the increasing sensitivity of the experiments, and in particular
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Figure 3.3: Marginalized joint 68% and 95% CL regions for nS and r at k = 0.002Mpc1 from Planck

2015 [51] compared to the theoretical predictions of selected inflationary models.

measurements from the Planck and BICEP2/Keck Collaborations [1, 51], have put stringent con-
straints on many of these models. As we saw in the previous section, the simplest models, where
a single scalar field is minimally coupled to gravity, seem to be disfavored4. On the other hand,
slightly more involved models such as the Starobinsky model [87–92], nonminimal Higgs infla-
tion [42, 93–113], or the so-called α–attractors [114–126] give predictions for the observables that
lie inside the sweet spot of the measurements. A common feature of these models is that they can
be formulated in terms of a nonminimal coupling function A(Φ) between the inflaton Φ and the
scalar curvature R. Such nonminimal coupling is expected to be generated at the quantum level
of the theory even if it is absent in the classical action [127]. These nonminimally coupled theories
belong to a general class of gravity theories termed scalar-tensor (ST) theories [2]. Other examples of
such theories include, among others, the f (R) models [128–135], scale-invariant models [136–155]
and nonminimal inflationary models [91, 127, 156–169].

Scalar-tensor theories are usually formulated in either the Jordan frame (JF) or the Einstein frame
(EF). In the JF the Planck mass is a dynamical quantity that depends on the value of the scalar
field, whose self-interactions are described by a potential. Furthermore, the scalar field is mini-
mally coupled to the metric, and the matter part of the action is just the standard one. In the EF the
gravitational action has the standard Einstein-Hilbert form plus a scalar field described by an effec-
tive potential. Moreover, the scalar appears in the matter sector of the action through the rescaling
factor which multiplies the metric tensor. The two frames are mathematically equivalent at the clas-
sical level5 since one can always switch between them by applying a conformal transformation of
the metric and a field redefinition, collectively referred to as frame transformation. Nevertheless, the
physical equivalence of the frames with respect to the physical predictions has become a matter of
a long-standing debate [174–193].

4See however [86].
5See also [170–173] for considerations on the quantum equivalence of the frames.
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3.3.1 General action functional

The most general action for scalar-tensor theories has the form [178]

S =

∫

d4x
√

−g
{

1
2
A(Φ)R − 1

2
B(Φ)gµν

(

∇µΦ
)

(∇νΦ)− V(Φ)

}

+ Sm

[

e2σ(Φ)gµν, χ
]

, (3.101)

where in the first term g is the metric determinant, R denotes the Ricci scalar associated with the
metric gµν and V(Φ) is the scalar potential. In the second term, Sm stands for the matter part of
the action. Furthermore, the four functions A(Φ), B(Φ), V(Φ) and σ(Φ) are arbitrary dimension-
less functions of the scalar field Φ that completely characterize a model, and we call them model
functions. Throughout, we normalize Φ in terms of the reduced Planck mass, MPl/(8πG)1/2 ≡ 1.

By considering a rescaling of the metric

gµν = e2γ̄(Φ̄) ḡµν (3.102)

and a redefinition of the field
Φ = f̄ (Φ̄) (3.103)

one can easily verify that the action (3.101) is invariant up to a boundary term, if the model functions
transform according to the following relations:

Ā(Φ̄) = e2γ̄(Φ̄)A
(

f̄ (Φ̄)
)

, (3.104)

B̄(Φ̄) = e2γ̄(Φ̄)
[

( f̄ ′)2B
(

f̄ (Φ̄)
)

− 6(γ̄′)2A
(

f̄ (Φ̄)
)

− 6γ̄′ f̄ ′A′] , (3.105)

V̄(Φ̄) = e4γ̄(Φ̄)V
(

f̄ (Φ̄)
)

, (3.106)

σ̄(Φ̄) = σ
(

f̄ (Φ̄)
)

+ γ̄(Φ̄), (3.107)

where a prime indicates differentiation with respect to the argument of the function, e.g. γ̄′ :=
dγ̄(Φ̄)/dΦ̄ and A′ := dA(Φ)/dΦ, and an overbar denotes quantities which are given in terms of
the conformal metric ḡµν.

Now, using the transformations (3.102)-(3.103) one can fix two out of the four arbitrary func-
tions {A,B,V , σ}. Different choices for these functions correspond to different parametrizations. For
example, the choice

A = F(φ), B = 1, V = V(φ), σ = 0, (3.108)

corresponds to the JF in the Boisseau-Esposito-Farèse-Polarski-Starobinski parametrization [194,
195],

S =
1
2

∫

d4x
√

−g
[

F(φ)R −∇ρφ∇ρφ − 2V(φ)
]

+ Sm
(

gµν, χ
)

. (3.109)

The choice

A = Ψ, B =
ω(Ψ)

Ψ
, V = V(Ψ), σ = 0, (3.110)

corresponds to the JF in the Brans-Dicke-Bergmann-Wagoner parametrization [196–198],

S =
1
2

∫

d4x
√

−g
[

ΨR − ω(Ψ)

Ψ
∇ρ

Ψ∇ρΨ − 2V(Ψ)

]

+ Sm
(

gµν, χ
)

. (3.111)



36 Chapter 3. Inflation

Table 3.1: Transformations between frames and parametrizations.

JF BDBW (Ψ) JF BEPS (φ) EF canonical (ϕ)

JF BDBW (Ψ) Identity F(φ) = Ψ α(ϕ) = − 1
2 ln Ψ

( dφ
dΨ

)2 = ω(Ψ)
Ψ

( dϕ
dΨ

)2 = 2ω(Ψ)+3
4Ψ2

( dF
dφ )

2 = Ψ

ω(Ψ)
( dα

dϕ )
2 = 1

2ω(Ψ)+3

JF BEPS (φ) Ψ = F(φ) Identity α(ϕ) = − 1
2 ln F(φ)

dΨ

dφ = dF
dφ ( dϕ

dφ )
2 = 3

4 (
d ln F(φ)

dφ )2 + 1
2F(φ)

ω(Ψ) = F(φ) 1
( dF

dφ )
2

EF can (ϕ) Ψ = e−2α(ϕ) F(φ) = e−2α(ϕ) Identity

( dΨ

dϕ )
2 = 4e−4α(ϕ)( dα

dϕ )
2

(

dφ
dϕ

)2
= 2e−2α(ϕ)

(

1 − 3
(

dα
dϕ

)2
)

ω(Ψ) = 1
2

(

1
( dα

dϕ )
2 − 3

)

( dF
dφ )

2 =
2e−2α(ϕ)

(

dα
dϕ

)2

1−3
(

dα
dϕ

)2

Finally, the choice
A = 1, B = 2, V = V(ϕ), σ = σ(ϕ), (3.112)

represents the EF in the canonical parametrization [196–199]

S =
1
2

∫

d4x
√

−g
[

R − 2gµν ∇µ ϕ∇ν ϕ − 2V(ϕ)
]

+ Sm

(

e2σ(ϕ)gµν, χ
)

. (3.113)

The transformations between these frames and parametrizations are shown in Table 3.1.

3.3.2 The Frame Controversy

Generally, when studying scalar-tensor theories, authors adhere to three viewpoints regarding
which frame is best suited to describe the physical world (see [2] for a nice discussion on the topic):

1. the Jordan frame is physical while the Einstein one is unphysical

2. the Einstein frame is physical while the Jordan one is unphysical

3. the Jordan and Einstein frames are physically equivalent
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Here the term “physical" indicates a theory that is theoretically consistent and makes predictions
for the values of some observables which can, at least in principle, be measured by macroscopic
experiments [176].

Proponents of the first viewpoint dismiss the Einstein frame as it lacks the physical motivation of
the Jordan frame. Non-minimally coupled Lagrangians arise in many extended theories of gravity
and string theories. In the Jordan frame, massive particles follow time-like geodesics and the Weak
Equivalence Principle is satisfied. In the Einstein frame, on the other hand, the coupling of the scalar
field to matter acts as a fifth force and the particles deviate from geodesic motion. At the quantum
level, however, even the Jordan frame seems to violate the Equivalence Principle [200]. This means
that the Equivalence Principle is not sufficient to discriminate between conformally related frames6.

Proponents of the second viewpoint purport that the Jordan frame leads to a negative definite
or indefinite kinetic energy for the scalar field, while the energy density is positive definite in the
Einstein frame. This means that the theory in the Jordan frame does not have a stable ground state
and that the system decays into a lower energy state ad infinitum (violation of the weak energy
condition). The weak energy condition is satisfied if Tabtatb ≥ 0 for all time-like vectors ta or, for the
fluid Tab = (ρ + P) uaub + Pgab, we have ρ ≥ 0 and ρ + P ≥ 0. However, as pointed out in [178],
there is no physical observable that corresponds to the sign of Tabtatb for all time-like vectors ta.
Therefore, there is no inconsistency between the two frames that can be measured.

Proponents of the third viewpoint conform to Dicke’s view [199] who claims that the two frames
are equivalent, as long as the units of mass, length, time, and all quantities derived from them
scale with appropriate powers of the conformal factor in the Einstein frame. In this sense, the
two conformally related frames are just different representations of the same theory, analogous to
different gauges of a gauge theory.

A way to circumvent the frame issue altogether is to do calculations with frame-independent
quantities and express the cosmological observables in a manifestly invariant way (see Refs. [201–
207]). We will explore this approach in the context of scalar-tensor theories when we study higher-
order corrections to the inflationary observables in Chapter 9.

3.3.3 Equations of motion

The equations of motion can be obtained by varying the action (3.101) while considering gµν, Φ and
χ to be the dynamical fields. The variation takes the form

δS =
1
2

∫

d4x
√

−g
{

E(g)
µν δgµν + E(Φ)δΦ + 2e4σE(χ)δχ

}

+
1
2

∫

d4x ∂σ

(

√

−g
[

B
ρ

(g) +B
σ
(Φ) + 2e4σ

B
ρ

(χ)

])

, (3.114)

where
√

−g B
ρ

(g) =
√

−g
{

Agµνgρλ∇λδgµν −A∇µδgρµ − gρλ (∇λA) gµν δgµν +
(

∇µA
)

δgµρ
}

, (3.115)
√

−g B
ρ

(Φ)
= −

√

−g 2Bgρµ
(

∇µΦ
)

δΦ (3.116)

and
√−g e4σ

B
ρ

(χ)
are the boundary terms arising from varying the action with respect to the metric

tensor gµν, the scalar field Φ, and the matter fields respectively. The boundary terms do not give

6In Ref. [170] the authors calculate the one-loop divergences in both frames and find that they coincide on shell but
not off shell.
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a contribution to the equations of motion, but we have nevertheless presented them here for com-
pleteness. Using the least action principle δS = 0, we arrive at the following equations of motion:

E(g)
µν :=A

(

Rµν −
1
2

gµνR
)

+

(

1
2
B +A′′

)

gµνgρσ∇ρΦ∇σΦ −
(

B +A′′)∇µΦ∇νΦ

+A′ (gµν�Φ −∇µ∇νΦ
)

+ gµνV − Tµν = 0 , (3.117)

E(Φ) :=RA′ + B′gµν∇µΦ∇νΦ + 2B�Φ − 2V ′ + 2σ′T = 0 , (3.118)

E(χ)
A :=E(χ)

A

[

e2σgµν, χC
]

= 0 . (3.119)

Here, the matter energy-momentum tensor is

Tµν ≡ − 2√−g
δSm

δgµν
, (3.120)

while T := gµνTµν is its trace and � := gµν∇µ∇ν. In this thesis, we will not be interested in the
equations of motion for the matter fields χ. Nevertheless, we have included them here in order
to make it clear that matter fields “feel" the geometry determined by ĝµν := e2αgµν. This means
that freely falling material objects follow the corresponding geodesics. Therefore, if we perform an
experiment in order to measure the geometry determined by gµν using reference objects built out of
the matter fields, we must also make use of the relevant correction factors.

The Ricci scalar in (3.117) can be eliminated by making use of a contraction with the metric, viz.,

gµνE(g)
µν := −AR + Bgµν∇µΦ∇νΦ + 3A′′gµν∇µΦ∇νΦ + 3A′�Φ + 4V − T = 0 . (3.121)

In this way, we can obtain an equation of motion that describes the propagation of the scalar field
Φ and does not contain the second derivatives of the metric tensor gµν. We find

2AB+3 (A′)2

A �Φ +

(

2AB+3 (A′)2
)′

2A gµν∇µΦ∇νΦ − 2 (AV ′−2VA′)
A +

2Aσ′−A′

A T = 0 . (3.122)

Finally, combining (3.118) and the covariant divergence of the tensor equation (3.117) results in

E(c)
ν := ∇µE(g)

µν +
1
2

E(Φ)∇νΦ = −∇µTµν + σ′T∇νΦ = 0 , (3.123)

which is the well known continuity equation.

In the case of a FLRW metric, Eqs. (3.117), (3.122) and (3.123) become

H2 = −A′

A HΦ̇ +
B

6A Φ̇
2 +

1
3AV +

1
3Aρ − K

a2 , (3.124)

2Ḣ+3H2 = −2
A′

A HΦ̇ −
( B

2A +
A′′

A

)

Φ̇
2 − A′

A Φ̈ +
1
AV − 1

AP − K
a2 , (3.125)

Φ̈ = −3HΦ̇−1
2

(

2AB+3(A′)2
)′

(2AB+3(A′)2)
Φ̇

2−2
AV ′−2VA′

2AB+3(A′)2−
(2Aσ′−A′)

2AB+3(A′)2 (ρ − 3P) , (3.126)

ρ̇ = −3H (ρ + P) + σ′ (ρ − 3P) Φ̇ . (3.127)

Note that for A = const. and σ = 0 the above equations reduce to the corresponding ones derived
in Chapter 2 for the case of a minimally coupled scalar field, as expected.
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3.3.4 Inflationary Observables

Perturbations in the context of scalar-tensor theories were originally studied by Hwang et al. [208–
215]. They can be treated in the same way as in the minimal case. The comoving curvature pertur-
bation R and the two polarizations of the gravitational waves satisfy in Fourier space the following
equations [216]:

1
a3QR

d
dt

(

a3QRṘ
)

+
k2R
a2 = 0 , (3.128)

1
a3QT

d
dt

(

a3QT ḣ+,×
)

+
k2h+,×

a2 = 0 , (3.129)

where the quantities QR and QT are given by

QR =
BΦ̇2 + 3Ȧ2

2A
(

H + Ȧ
2A
)2 =:

Φ̇2

H2 ZR , QT = A =: ZT . (3.130)

Here, we have also defined ZR and ZT as

ZR :=
k + 3 ḟ 2

2 f ϕ̇2

(

1 + ḟ
2H f

)2 , ZT :=
f

M2
Pl

. (3.131)

Note that in the Einstein frame in the canonical parametrization with A = 1 (= MPl) and B = 1,
we have ZR = ZT = 1. Next, further defining

zR := a
√

QR , vR := zRR , (3.132)

and
zT := a

√

QT , vT := zTh+,× , (3.133)

the Mukhanov-Sasaki equations (3.128) and (3.129) can be written as

d2vR,k

dτ2 +

(

k2 − 1
zR

d2zR
dτ2

)

vR,k = 0 , (3.134)

d2vT,k

dτ2 +

(

k2 − 1
zT

d2zT

dτ2

)

vT,k = 0 . (3.135)

These are usually solved in the de Sitter limit τ = −1/(aH) and one finally obtains for the scalar
and tensor spectral indices, as well as the tensor-to-scalar ratio [2, 211, 215]

nS = 1 + 2 (2ǫ1 − ǫ2 + ǫ3 − ǫ4) , (3.136)

nT = 2 (ǫ1 − ǫ3) , (3.137)

r = −16 (ǫ1 − ǫ3) , (3.138)
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with

ǫ1 :=
Ḣ
H2 = −ǫH , (3.139)

ǫ2 :=
Φ̈

HΦ̇
= −ηH , (3.140)

ǫ3 :=
Ȧ

2HA , (3.141)

ǫ4 :=
Ė

2HE
, (3.142)

where

E = A
[

B +
3
(

Ȧ
)2

2A
(

Φ̇
)2

]

. (3.143)

Note that the first order consistency relation nT = −8r holds true in the case of scalar-tensor theories
as well.
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Chapter 4

The Standard Model of Particle Physics
and Beyond

The Standard Model (SM) of particle physics [217–219] is a renormalizable quantum field theory
that describes all known elementary particles and their gauge interactions (excluding gravity). For
over forty years it has passed every experimental test. The discovery [220, 221] of the Higgs bo-
son [222–225] in 2012 by LHC at CERN, unveiled the last missing piece of the puzzle.

The SM is based on the symmetry group GSM = SU(3)C × SU(2)L ×U(1)Y. The SU(3)C group is
associated with the theory of quantum chromodynamics (QCD), a non-Abelian gauge theory which
describes the strong interactions between quarks and gluons, while SU(2)L × U(1)Y describes the
electroweak (EW) interactions between quarks, leptons, electroweak gauge bosons (W1,2,3 and B)
and the Higgs boson. By means of the Higgs mechanism (to be detailed below), the EW gauge sym-
metry gets spontaneously broken into the electromagnetic U(1)EM around the 100 GeV scale. In this
way, fermions obtain their masses through Yukawa interactions with the Higgs, while Higgs-kinetic
terms lead to new massive eigenstates for three of the electroweak gauge bosons (now denoted as
W± and Z), while one eigenstate remains massless and is identified with the photon γ (or the A
gauge field).

Quarks are fundamental constituents of matter of spin-1/2 but are never found in isolation in
Nature due to their asymptotic freedom at low energies. They are thus confined to form hadrons
(composed of three quarks) such as protons and neutrons and also mesons (composed of a quark
and an anti-quark) such as pions and kaons. There are six types of quarks, also known as flavors:
up, down, charm, strange, top, bottom, arranged into three generations or families due to their
quantum numbers under the SM gauge group. Gluons have spin-1 and are the force carriers of the
strong interactions. They are what “glues" quarks together into composite particles.

Apart from quarks, matter also consists of leptons which have spin-1/2 too but are color-neutral
(or transform as singlets) under SU(3)C. Just as quarks, they are categorized into three families,
with the electron and its corresponding neutrino making up the first. The electron, muon and tau
are electrically charged, while neutrinos are not. Neutrinos are also massless in the SM. Neverthe-
less, oscillations between them suggest [226–233] that they indeed have masses, albeit small. This
is the first indication that the SM needs to be extended.

All of the particles of the SM and their quantum numbers under the GSM and U(1)EM are collec-
tively shown in Table 4.1.
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Table 4.1: Properties of the elementary particles of the Standard Model [234].

name symbol spin charge T3 dim [GSM] mass

electron R e− 1/2 −1 0 (1, 1,−1) 0.511 MeV
electron L e− 1/2 −1 −1/2 (1, 2,−1/2) 0.511 MeV
e-neutrino L νe 1/2 0 +1/2 (1, 2,−1/2) < 2 eV
muon R µ 1/2 −1 0 (1, 1,−1) 105.66 MeV
muon L µ 1/2 −1 −1/2 (1, 2,−1/2) 105.66 MeV
µ-neutrino L νµ 1/2 0 +1/2 (1, 2,−1/2) < 0.19 MeV
tau R τ 1/2 −1 0 (1, 1,−1) 1776.86 MeV
tau L τ 1/2 −1 −1/2 (1, 2,−1/2) 1776.86 MeV
τ-neutrino L ντ 1/2 0 +1/2 (1, 1,−1/2) < 18.2 MeV
down-quark R d 1/2 −1/3 0 (3, 1,−1/3) 4.7 MeV
down-quark L d 1/2 −1/3 −1/2 (3, 2, 1/6) 4.7 MeV
up-quark R u 1/2 2/3 0 (3, 1, 2/3) 2.2 MeV
up-quark L u 1/2 2/3 +1/2 (3, 2, 1/6) 2.2 MeV
strange-quark R s 1/2 −1/3 0 (3, 1,−1/3) 94.6 MeV
strange-quark L s 1/2 −1/3 −1/2 (3, 2, 1/6) 94.6 MeV
charm-quark R c 1/2 2/3 0 (3, 1, 2/3) 1.28 GeV
charm-quark L c 1/2 2/3 +1/2 (3, 2, 1/6) 1.28 GeV
bottom-quark R b 1/2 −1/3 0 (3, 1,−1/3) 4.18 GeV
bottom-quark L b 1/2 −1/3 −1/2 (3, 1, 1/6) 4.18 GeV
top-quark R t 1/2 2/3 0 (3, 1, 2/3) 173.1 GeV
top-quark L t 1/2 2/3 +1/2 (3, 1, 1/6) 173.1 GeV
gluons Gα

µ 1 0 0 (8, 1, 0) 0
photon γ 1 0 < 10−18 eV
W+-boson W+ 1 +1 80.385 GeV
W−-boson W− 1 −1 80.385 GeV
Z-boson Z0 1 0 91.1876 GeV
Higgs boson h 0 0 125.09 GeV

4.1 The Standard Model Lagrangian

The SM Lagrangian can be schematically split into different parts: the gauge sector LG, the fermion
sector LF, the Higgs sector LH, and the Yukawa sector LY

1. We have

LSM = LG + LF + LH + LY . (4.1)

Gauge sector

The first term in the right-hand side of (4.1) is the kinetic term of the gauge fields of the SU(3)C ×
SU(2)L × U(1)Y gauge symmetry

LG = −1
4

8
∑

A=1

GA,µνGA,µν −
1
4

3
∑

a=1

Wa,µνWa,µν −
1
4

BµνBµν , (4.2)

1We have omitted the gauge-fixing and ghost sectors for simplicity.
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Figure 4.1: A schematic representation of the interactions between the Standard Model particles at

tree level.

where GA,µν, Wa,µν, and Bµν are the field tensors of the corresponding gauge fields

SU(3) : GA,µν = ∂µGA,ν − ∂νGA,µ + g3 f ABCGB,µGC,ν , (4.3)

SU(2) : Wa,µν = ∂µWa,ν − ∂νWa,µ + g2ǫabcWb,µWc,ν , (4.4)

U(1) : Bµν = ∂µBν − ∂νBµ . (4.5)

g3, g2 and g1 :=
√

5
3 gY are the gauge coupling constants of SU(3)C, SU(2)L and U(1)Y, respectively.

f ABC and ǫabc are the totally antisymmetric structure constants of SU(3) and SU(2), respectively.
They are defined by the commutation relations between the group generators ta and TA, with a =
1 . . . 3 and A = 1 . . . 8,

SU(2) :
[

ta, tb
]

= iǫabctc , (4.6)

SU(3) :
[

TA, TB
]

= i f ABCTC , (4.7)

where the SU(2) generators are related to the Pauli matrices as ta = σa/2 and the SU(3) generators
are related to the Gell-Mann matrices as TA = λA/2.

Fermion sector

The fermion sector of the SM Lagrangian contains the fermions and the gauge bosons by means
of the gauge covariant derivative. A striking feature of the weak interactions, discovered in the
1950s, is that they violate parity. Therefore, the charged weak gauge bosons only couple to quarks
and leptons with left-handed chirality. Then, under weak isospin SU(2) the left-handed particles
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transform as doublets, whereas the right-handed ones transform as singlets

LL =

(

νe L

eL

)

, QL =

(

uL

dL

)

, LR,e = eR , QR,u = uR , QR,d = dR . (4.8)

The Lagrangian term reads

LF = Q†
Li

iσ̄µDµQLi + u†
Ri

iσµDµuRi + d†
Ri

iσµDµdRi + L†
Li

iσ̄µDµLLi + e†
Ri

iσµDµeRi , (4.9)

where σµ = (1, σi) and σ̄ = (1,−σi). Also, the flavour index i = 1 . . . 3 runs through the three
families of quarks and leptons and we have omitted the colour indices for brevity. The covariant
derivative is given by

Dµ = ∂µ − ig3θSGµ,ATA − ig2θWWµ,ata − igYYBµ , (4.10)

where θS = 0, 1 for singlets or triplets of SU(3)C and θW = 0, 1 for singlets or doublets of SU(2)L.
Moreover, Y is the weak hypercharge, which along with the third component of weak isospin T3
give the electric charge Q as

Q = T3 + Y . (4.11)

Higgs sector

The Higgs part of the Lagrangian contains all the terms that generate the spontaneous symmetry
breaking (SSB) of SU(2)L × U(1)Y down to U(1)EM that results in some of the gauge bosons and
chiral fermions acquiring their masses. In order for SSB to occur, we introduce a complex scalar
doublet H, known as the Higgs field, which acquires a non-zero vacuum expectation value (VEV)

〈0|H|0〉 =: 〈H〉 = 1√
2

(

0
vh

)

. (4.12)

The Higgs Lagrangian has the form

LH = (DµH)† (DµH
)

− V (H) , (4.13)

with the covariant derivative Dµ = ∂µ − ig2Wµ,ata − igYYhBµ. The Higgs potential V (H) has the
form

V (H) = −µ2
hH†H + λh

(

H†H
)2

, (4.14)

where µ2
h is the Higgs mass term and λh is the Higgs self-coupling. For µ2

h > 0 and λ > 0 the Higgs

potential has a non-trivial minimum, vh =

√

µ2
h

λh
, which breaks the symmetry. Then we can study

the theory around the symmetry-breaking minimum. The Higgs doublet becomes

H =

(

φ+

φ0 = 1√
2
(vh + h + iχ) ,

)

(4.15)

where φ+ and φ0 are complex fields containing 4 degrees of freedom in total. In the unitary gauge,



4.1. The Standard Model Lagrangian 45

Figure 4.2: Shape of the Higgs potential that leads to spontaneous symmetry breaking. Credit: [235]

the Higgs potential (4.13) contains the terms

V ⊃ µ2
hh2 + λhvhh3 +

1
4

λhh4 (4.16)

=
1
2

M2
hh2 +

√

λh

2
Mhh3 +

1
4

λhh4 , (4.17)

where we introduced the Higgs boson mass

M2
h := 2µ2

h = 2λhv2
h . (4.18)

Moving on, the term relevant for the gauge boson masses is successively written as

LH,bilinear =
1
8

∣

∣

∣

∣

∣

(

g2W3
µ + g1Bµ g2

√
2W+

µ

g2
√

2W−
µ −g2W3

µ + gYBµ

)

(

0
vh

)

∣

∣

∣

∣

∣

2

=
g2

2v2
h

4
W+

µ Wµ− +
v2

h

8

(

W3
µ Bµ

)

(

g2
2 −g2gY

−g2gY g2
Y

)(

W3,µ

Bµ

)

=
g2

2v2
h

4
W+

µ Wµ− +
v2

h

8

(

Zµ Aµ

)

(

g2
2 + g2

Y 0
0 0

)(

Zµ

Aµ

)

, (4.19)

where we defined W±
µ = 1√

2

(

W1
µ ∓ iW2

µ

)

. In the last line above we performed a diagonalization of
the mass matrix of the eigenstates Zµ and Aµ

(

Zµ

Aµ

)

=

(

cos θW − sin θW

sin θW cos θW

)(

W3
µ

Bµ

)

, (4.20)

with the help of the Weinberg angle θW given by

cos θW =
g2

√

g2
2 + g2

Y

and sin θW =
gY

√

g2
2 + g2

Y

. (4.21)
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From (4.19) we can read off the masses of the electroweak gauge bosons

M2
W =

1
4

g2
2 v2

h , M2
Z =

1
4

(

g2
2 + g2

Y

)

v2
h , and MA = 0 . (4.22)

The massless field Aµ is identified with the photon. Note that we started with four massless gauge
bosons (each containing two degrees of freedom) and we ended up with one massless gauge boson
and three massive ones (each containing three degrees of freedom). The three new degrees of free-
dom correspond to the three would-be Goldstone bosons of the Higgs doublet which were “eaten
away" by the gauge bosons.

Yukawa sector

Mass terms for the fermions are generated by coupling the Higgs doublet with left-handed and
right-handed fermion fields in gauge-invariant combinations. The terms allowed by gauge and
Lorentz invariance are

LY = −
3
∑

i=1

Yu
ij Q

†
Li
(iσ2H∗) uRj −

3
∑

i=1

Yd
ijQ

†
Li

HdRj −
3
∑

i=1

Ye
ijL

†
Li

HeRj + H.c. , (4.23)

where the Yukawa matrices Yu,d,e
ij are 3 × 3 complex-valued matrices. We can diagonalize them and

define the real mass eigenstates through unitary transformations

Yu
diag = Vu

L YuVu†
L , Yd

diag = Vd
L YdVd†

L , Ye
diag = Ve

LYeVe†
L . (4.24)

Then, by expanding the Higgs field around its VEV we obtain the mass matrices

Mu =
vh√

2
Yu

diag = diag (Mu, Mc, Mt) (4.25)

Md =
vh√

2
Yd

diag = diag (Md, Ms, Mb) (4.26)

Me =
vh√

2
Ye

diag = diag
(

Me, Mµ, Mτ

)

(4.27)

Note that in (4.23), neutrinos have no right-handed components and therefore remain massless.

Electroweak Precision Observables

The predictions of the Standard Model Lagrangian have been probed with very high accuracy in
particle accelerators such as LEP and TEVATRON, and most recently LHC. For the electroweak
sector, in particular, one needs only three input parameters in order to compare the theoretical pre-
dictions of the SM with the experimental data: the mass of the Z boson determined by LEP1 [236],
the fine-structure constant αem extracted from measurements of the anomalous magnetic moment
of the electron (see [237] and references therein), and the Fermi constant GF determined from the
muon lifetime [238]:

MZ = 91.1876 ± 0.0021 GeV , (4.28)

α−1
em = 137.035999139(31) , (4.29)

GF = 1.1663787(6)× 10−5 GeV−2 . (4.30)
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Using these three inputs, one can predict with high precision all the other observables of the elec-
troweak sector. One could also use them to parametrize and constrain new Physics effects via the
so-called “oblique parameters" introduced in [239–242].

Let us write the vacuum polarization amplitudes of the EW gauge fields, i.e. the quadratic part
of the effective Lagrangian, after EW symmetry breaking as

L(2)
eff = −1

2
W3

Π33(q2)W3 − 1
2

BΠ00(q2)B − W3
Π30(q2)B − W+

ΠWW(q2)W− , (4.31)

where the Lorentz indices have been contracted with qµqν/q2 − gµν. Since this is an effective low-
energy action, it does not explicitly depend on any high-energy completion of the SM. The functions
Πij, however, obtain corrections from loops involving both the SM and possibly new Physics de-
grees of freedom. Expanding the polarization amplitudes in (4.31) for small momenta up to O(q2),
one ends up with 8 independent quantities Π(0) and Π′(0). Specifically, Π′

WW(0) and Π′
00(0) fix

the value of the coupling constants g2 and gY. Also, ΠZZ(0) fixes the VEV vh through the mass of
the Z boson. Furthermore, for the photon to be massless, we need Πγγ(0) = ΠγZ(0) = 0. The rest
three independent physical quantities are paremetrized as

Ŝ =
g2

gY
Π

′
30(0) =

αem

4 sin2 θW
S , (4.32)

T̂ =
Π33(0)− ΠWW(0)

M2
W

= αemT , (4.33)

Û = Π
′
33(0)− Π

′
WW(0) . (4.34)

The parameter T essentially describes the difference between the new Physics contributions of neu-
tral and charged current processes at low energies while S (and U) measure new Physics contribu-
tions to neutral (charged) current processes at different energy scales. The measured values for the
STU parameters are [243]

S = −0.03 ± 0.10 , (4.35)

T = 0.01 ± 0.12 , where Mh = 125.5 ± 0.4 GeV , (4.36)

U = 0.05 ± 0.10 , (4.37)

and are in excellent agreement with the SM values of zero.

4.2 Shortcomings of the Standard Model

Since its inception, the SM has been remarkably successful. Numerous experiments have validated
its predictions for over forty years. Nevertheless, there are some phenomena that cannot be ex-
plained by it. Also, the SM has a few theoretical inconsistencies of its own. These considerations
have led to the development of physics beyond the Standard Model (BSM). After the discovery of
the Higgs boson in 2012, the LHC has now shifted its focus into energy scales where BSM effects
could lie. In this section, we briefly review the shortcomings of the SM. Afterwards, we will try to
present viable solutions for some of these problems.

From an experimental point of view, the SM does not account for:

• Dark matter (DM)
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Almost 85% of matter in the Universe is in a form that does not radiate. It is therefore assumed
to be electrically neutral and also stable so that it could have survived until today. Interest-
ingly, none of the particles of the SM can account for DM, which means we need to extend
it in order to provide a Particle Physics description for DM. We will discuss DM in detail in
Chapter 5.

• Neutrino masses

In the SM, neutrinos are exactly massless. This is due to the fact that the SM contains only
left-handed neutrinos. Nevertheless, experiments have observed neutrinos change flavours,
which implies that they mix and therefore have non-zero masses.

• Matter-antimatter asymmetry

The Universe appears to be populated mostly by matter2. Nevertheless, the SM predicts that
matter and antimatter should have been copiously produced during the Big Bang.

From a theoretical point of view, the following problems arise in the SM:

• Strong CP problem

QCD seems to preserve charge-conjugation and parity (CP-symmetry) even though there is
no explicit reason as to why it should. The theory is usually extended with the introduction
of a CP-violating term known as the θ term. This parameter, however, is constrained by
experiments to be very small (θ ≪ 10−9). A well-motivated solution to the strong CP-problem
is the introduction of a Peccei-Quinn global U(1) symmetry which treats the θ parameter as
a dynamical field. The potential of this field then has a minimum at θ = 0 which is the CP-
conserving point.

• Gauge unification

In quantum field theory, all coupling parameters depend on the energy scale at which they
are measured. The measured values of the three SM gauge couplings and the terms contained
in their respective renormalization group equations, suggest that the values of the couplings
come close at energy scales of around 1016 GeV. At this energy scale, then, it is hypothesized
that the three forces merge into a single force and a Grand Unified Theory (GUT) encompasses
the SM. The simplest GUT contains an SU(5) gauge group which breaks down to GSM with
the help of new heavy fields.

• Vacuum stability

The measured value of the Higgs boson mass (Mh = 125.09 ± 0.24 GeV), in conjunction with
the mass of the top quark (Mt = 173.34 ± 0.76 GeV) have created a new problem for the SM.
When one tries to solve the renormalization group equations (RGEs) of the couplings of the
SM, then one finds that the Higgs self-coupling λh runs to negative values above energies
of ∼ 1010 GeV. This signals a possible unboundedness of the Higgs potential and a vacuum
instability as a result. We will look more closely into this problem in Section 4.4.

• Hierarchy problem

The mass parameter µ2
h in the Higgs potential (4.14) is the only dimensionful parameter in the

SM. It has the dimension of (mass)2 and it sets the electroweak scale at around 100 GeV. This
parameter is not protected by any symmetry and may in principle receive a contribution from
radiative corrections. These radiative corrections are generally proportional to the energy
scale ΛNP where new physics is assumed to be at work or to the ultraviolet cutoff scale ΛUV

2Trace amounts of antimatter are only naturally produced by collisions of cosmic rays or in astrophysical sources (or
from lightning strikes!).

https://www.livescience.com/61013-lightning-radioactive-particle-accelerator.html?_ga=2.196460204.1698004814.1512339126-1619863081.1506870914
https://www.livescience.com/61013-lightning-radioactive-particle-accelerator.html?_ga=2.196460204.1698004814.1512339126-1619863081.1506870914
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up to where the SM is valid. Naturally, then, one would expect the measured value of the
Higgs mass to be much higher, around ΛNP or ΛUV, unless there is an incredible fine-tuning
cancellation between the quadratic radiative corrections and the bare mass. We will look more
closely into this problem in Section 4.3.

• Gravity

While not exactly a problem of the SM in itself, we would ideally want the SM to also incorpo-
rate gravity. As it stands, however, the general theory of relativity is non-renormalizable and
we cannot employ the usual prescriptions of quantum field theory to describe it. Intensive
efforts towards a theory of quantum gravity have resulted in string theory and loop quantum
gravity. Nevertheless, these theories are still far from even being verifiable.

Next, let us take a closer look at some of the above problems since they will be of interest to us
in this thesis.

4.3 Vacuum Stability

The observed mass of the Higgs boson has allowed us to determine the last free parameter in the
SM, namely the Higgs self-coupling,

λh = M2
h/2v2

h ≃ 0.13 . (4.38)

The Higgs self-coupling is not in fact constant, but evolves with energy just like any other coupling
in a quantum field theory, due to loop corrections. We can then use the renormalization group
equations (RGEs) to evolve the SM couplings and determine up to what scale the theory is valid.
Quantum gravity is expected to come into play around MPl, but any theoretical inconsistency before
that would be an indication that new Physics effects should be considered.

For the SM to be valid up to the Planck scale, it should not have any Landau poles and the
Higgs potential should be stable. A coupling develops a Landau pole when it becomes infinite at
a finite energy scale. In such a case, either the theory completely changes form similar to what
happens when QCD confines, or we need new Physics to tame the uncontrollable growth of the
coupling. For the Higgs potential to be absolutely stable, the electroweak vacuum should be its
global minimum. We can write the SM potential as

V(h) = −µ2
h

2
h2 +

λh(h)
4

h4 , (4.39)

where we have now included a field dependence in the Higgs self-coupling, in order to take into
account its running when we go to large field values. The Higgs potential is said to be stable or
bounded from below as long as λh(h) > 0 for large field values. The one-loop RGE for λh in the MS
scheme has the form

(4π)2 dλh

d ln µ
= −6y4

t + 24λ2
h + λh

(

12y2
t −

9
5

g2
1 − 9g2

2

)

+
27
200

g4
1 +

9
20

g2
1g2

2 +
9
8

g4
2 , (4.40)

where µ is the renormalization scale. It turns out that the large value of the top Yukawa coupling
yt and the negative sign that comes with it (since it is a fermion), force λh to become smaller with
energy until it crosses zero at ∼ 1010 and then becomes negative. The evolution of the SM couplings
up to very high energies is shown in Figure 4.4. If gravity does not introduce any new particle
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thresholds, then the U(1) gauge coupling develops a Landau pole above 1035 GeV and the Higgs
potential has a new global minimum at 1026 GeV (see Figure 4.3).
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Figure 4.4: Running of the gauge couplings, the top Yukawa and the Higgs self-coupling in the

Standard Model. Credit: [139]

The fact that λh becomes negative at higher energies signals a possible instability for the SM
vacuum and poses a great problem since at any moment the SM vacuum could transition through
a quantum tunnelling effect to the lower state of the high-energy minimum with potentially catas-
trophic results for the Universe. Luckily, due to the interplay between the Higgs boson and top
quark masses, the SM vacuum is actually in a near-critical condition, at the border between stabil-
ity and metastability (see Figure 4.5). Absolute stability would be achieved if the Higgs were a little
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heavier [4]
Mh > (129.1 ± 1.5)GeV (stability condition), (4.41)

or the top quark were a little lighter

Mt < (171.53 ± 0.42)GeV (stability condition). (4.42)

Furthermore, careful studies [3,4,244–251] of the vacuum stability issue have shown that the proba-
bility of vacuum decay to have happened in the past is very small, while the lifetime of the vacuum
exceeds by many orders of magnitude the age of the Universe (see Figure 4.6). In any case, from a
theoretical perspective, we would prefer the electroweak vacuum to be absolutely stable. This can
be easily achieved if we introduce new scalar fields to the SM that couple with the Higgs. Then, the
RGE of λh would receive a positive contribution from the new portal couplings, and depending on
their values, λh could be made to remain positive for all higher field values.

4.4 Hierarchy Problem

Over the last decades, the hierarchy or naturalness problem has been the main driving force for the
construction of theories beyond the Standard Model. In 1978, Susskind showed [252] that the mass
of a scalar field is very sensitive to any higher energy scales in the theory due to large quantum
corrections. These corrections would tend to drive the mass of the scalar field up to the highest
energy scale in the theory. In the SM, the only scalar is the Higgs field. As we will see next, any
physical states will give a threshold correction to the Higgs mass proportional to their own mass
scale, a fact that is independent of any regularization and renormalization scheme.
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Let us start by considering the contributions of fermion loops to the two-point function of the
SM Higgs field. Using a cutoff scale Λ in order to regularize the loop integral, the corrections to the
Higgs mass are given by

∆M2
h ≈ −y4

t

4π2

(

Λ
2 + M2

t ln
(

Λ2

M2
t

)

− M2
t

)

, (4.43)

where we only included the top quark since it is the heaviest of the fermions and contributes the
most in the above expression. We can see that as the cutoff scale Λ grows, so do the corrections
which means they are quadratically divergent. The renormalized Higgs mass is given by the sum
of the bare mass M0 and the corrections,

M2
h = M2

0 + ∆M2
h ≈ M2

0 −
y2

t

8π2 Λ
2 . (4.44)

The measured mass of the Higgs is Mh = 125 GeV. Suppose now that we interpret Λ as a physical
scale and choose it to be the Planck scale MPl ≈ 1019 GeV. We would then need an enormous
amount of fine-tuning between M0, yt, and Λ in order to achieve the observed Higgs mass. It
is thus unnatural for the Higgs mass to be around the electroweak scale. This is known as the
naturalness problem and is an effect of the hierarchy problem where there is a vast hierarchy between
the electroweak and another scale (e.g. right-handed neutrino scale, GUT, or Planck scale) and
a large amount of fine-tuning is required in order to absorb the threshold corrections to the bare
Higgs mass term.

Suppose now that we use dimensional regularization in order to calculate the quantum correc-
tions to the Higgs mass. We find

δM2
h ≈ −y2

t M2
t

4π2

(

2
ǫ
− γE + ln(4π)− ln

M2
t

µ2

)

. (4.45)
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The right-hand side is still divergent, but the 1/ǫ pole corresponds to a logarithmic divergence as
opposed to the quadratic divergence we saw in the cutoff regularization scheme. Physics, never-
theless, should be independent of regularization and subtraction schemes. We will then define the
hierarchy problem in terms of real physical threshold effects and not in terms of quadratic diver-
gences [253]. In both the cutoff and dimensional regularization schemes, the threshold contribution
is that of the top mass, M2

t . The effect of the top quark does not require much fine-tuning since the
top mass is close to that of the Higgs, but new heavier particles could potentially give large contri-
butions. Consider for example that we couple the Higgs to a new massive particle with coupling y
and mass M. Then, the threshold contribution would be proportional to y2M2 and we say that the
theory has a hierarchy problem if y2M2 ≫ M2

h.

We can understand the same phenomenon also in the context of the renormalization group.
Suppose again that a single fermion with mass M couples to the Higgs with a Yukawa coupling y.
Then, the RGE for the Higgs mass would have the form

(4π)2 ∂M2
h

∂ ln µ
= −16M2y2 + 2λh M2

h . (4.46)

Running from a scale µ0 to a scale µ1 with M ≫ Mh would induce a change in Higgs mass of the
order of

δM2
h ≈ − 16

(4π)2 y2M2 ln
µ1

µ0
. (4.47)

We see again that for scales that are significantly separated we need a large amount of fine-tuning
in order to achieve Mh ≪ M.

The hierarchy problem is a problem that only the Higgs has in the SM. Scalar fields are additively
renormalized, as opposed to fermion fields which are renormalized in a multiplicative way. For
example, the one-loop correction to the fermion mass, M f , is found to be

δM f ∝ M f ln
(

Λ

M f

)

. (4.48)

We see that the mass correction is proportional to the mass itself and there is no fine-tuning in-
volved. In the limit M f → 0, the corrections are also zero which means quantum corrections would
not generate a mass term if M f = 0 initially. In this limit, the fermion mass is protected by the chi-
ral symmetry which serves as a “custodial symmetry". According to ’t Hooft, a quantity in nature
should be small if the underlying theory becomes more symmetric as that quantity goes to zero [5].
A similar situation arises for spin-1 particles. The quantum corrections to the gauge boson masses
are proportional to the gauge boson mass themselves, which are protected by the gauge symmetry
that also serves as a custodial symmetry.

For spin-0 particles such as the Higgs, there is no established custodial symmetry in the SM that
can protect its mass from large radiative corrections (with the exception of the non-trivial conformal
symmetry or scale invariance which we will discuss in detail later on). We should therefore search for
a new symmetry that will serve as a custodial symmetry for the scalar particles and the Higgs in
particular.

In supersymmetric theories, scalars and fermions are connected by supersymmetry. The chiral
symmetry that protects the fermions now also protects the scalars. Let us consider again the one-
loop contributions to the Higgs mass. There is now an extra contribution from the top superpartner,
the stop t̃. We find (for the up-type Higgs Hu)

δM2
Hu

≃ − 6y2
t

16π2 Λ
2 +

6y2
t

16π2 Λ
2 − 3y2

t

4π2 M2
t̃ ln

(

Λ

Mt̃

)

. (4.49)



54 Chapter 4. The Standard Model of Particle Physics and Beyond

The first two terms explicitly cancel out and we are left with threshold contributions from new
heavy states which are at most logarithmically sensitive to the cutoff. Therefore, as long as super-
symmetry is softly broken not too far away from the electroweak scale, the hierarchy problem seizes
to exist. Unfortunately, LHC has not, as of the writing of this thesis, discovered any supersymmet-
ric particles, which has cast a shadow of doubt on the physical manifestation of the beautiful idea
of supersymmetry.

Another option is that of a global symmetry. The Higgs is then considered to be a pseudo-
Nambu–Goldstone boson (pNGB) of a spontaneously broken global symmetry, while its mass is
protected by a shift symmetry (see [254] for a review). This idea has resulted in the little Higgs
model (see [255–257] for some reviews) and its extensions [258–260] and in the twin Higgs model [261,
262]. In such scenarios, a top partner is usually introduced around the TeV scale. The radiative con-
tribution to the Higgs mass has the form

δM2
h ≃ − 6y2

t

16π2 Λ
2 +

6y2
t

16π2 Λ
2 − 3y2

t

4π2 M2
T ln

(

Λ

MT

)

, (4.50)

where MT is the energy scale associated with the top partner T. As in the supersymmetric case, the
quadratic divergences cancel and we are only left with a logarithmically divergent part.

There have been other well-motivated solutions for the hierarchy problem. Most of them predict
new particles around the TeV scale so that they are not very fine-tuned. This is convenient, in the
sense that dark matter is also thought to reside around the TeV scale. In Chapter 6 we will consider
classical scale invariance as a possible solution to the hierarchy problem.

4.5 Right-handed Neutrinos and Type-I Seesaw

Numerous solar, atmospheric, reactor, and accelerator (anti-)neutrino experiments (see [226–233]
for example) have established that neutrinos produced in a well-defined flavour eigenstate can
be detected, after propagating a macroscopic distance, as a different flavour eigenstate. This is
evidence that neutrinos have nonzero mass and they mix among themselves, much like quarks. As
a consequence, we must find a way to explain these observations by going beyond the Standard
Model (see [263–265] for some reviews). The simplest way of generating mass for the neutrinos
is to add three right-handed neutrinos NR to the SM. This is similar to the way the rest of the SM
fermions obtain their masses. The relevant Lagrangian term has the form

LN = −Yij
ν L̄i iσ2H∗Nj . (4.51)

We are now able to write down a neutrino mass term. Notice the Yukawa couplings Yij
ν in (4.51)

which couples the Higgs doublet with the left and right-handed neutrinos. Such a Yukawa coupling
could in principle deteriorate the vacuum stability problem since it would appear in the RGE of the
Higgs self-coupling λh. Nevertheless, since neutrinos are many orders of magnitude lighter than
the top quark, we can completely ignore these Yukawa couplings in regards to the evolution of λh.

We can in principle also add another term for the right-handed neutrinos which breaks lepton
number. Then, the neutrino part of the Lagrangian is augmented to

−LN = Yij
ν L̄i iσ2H∗Nj + H.c. +

1
2

N̄c
i MRNj . (4.52)

The last term is a Majorana term and MR is a 3 × 3 mass matrix which sets the scale of the right-
handed neutrinos. It is usually assumed to be much larger than the electroweak scale, MR ≫
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vh. Employing then the type-I seesaw mechanism we can obtain the masses of the left-handed
neutrinos, given by

mν = v2
hYT

ν M−1
R Yν . (4.53)

In order to obtain the estimated mass mν = O(0.1 eV) one usually assumes a Yukawa coupling Yν

of order unity and a seesaw scale of MR = O(1014 GeV). Note, however, that Yν can be naturally
much smaller, which could bring the seesaw scale closer to the electroweak scale, avoiding in such
a way an unnatural hierarchy between the scales. We will be concerned again with right-handed
neutrinos in the context of classical scale invariance in Chapter 7.





57

Chapter 5

Dark Matter

As we discussed in Chapter 2, dark matter (DM) comprises around 85% of the matter content of the
Universe [1]. It is of paramount importance then to understand how DM came to be and what it is
composed of.

In this chapter, we begin by outlining the main evidence supporting the existence of DM. Then,
in Section 5.2 we briefly review the properties of some of the most popular DM candidates. In
Section 5.3, we focus on the WIMP paradigm and its various aspects. Finally, in Section 5.4 we
briefly review the status of the ongoing DM searches.

5.1 Evidence for Dark Matter

The first evidence for the presence of DM came from F. Zwicky in 1933 [266]. He was studying the
movement of galaxies in the Coma Cluster by measuring their velocities, when he noticed that the
mass-to-light ratio was ∼ 400 times what one would expect if all the mass was made up of stars
like our Sun. He named the missing matter “dark matter", but his findings were largely ignored at
the time.

5.1.1 Galactic rotation curves

Around the 1970s, astronomers who were studying the rotation curves of galaxies, i.e. the circular
velocities of stars and gas as a function of the distance from the galactic center, found that the
rotation velocities do not decrease with distance as one would expect from Kepler’s Second Law,
but instead remain nearly constant beyond the galactic disk. This behaviour is shown in Fig. 5.1.
From standard Newtonian gravity, the stars’ circular velocity is expected to be

v(r) =

√

GM(r)
r

, (5.1)

where M(r) is the mass enclosed inside the sphere with radius r and G is the gravitational constant.
Beyond the optical disc, assuming all mass is concentrated inside the disc, Gauss’ Law tells us that
M should remain constant and the velocity should be falling as v ∝ r−1/2. Nevertheless, since the
velocity is observed to be almost constant beyond the Galactic disk, there must be a non-luminous
halo with

ρ(r) ∝
M(r)

r3 ∼ 1
r2 . (5.2)
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Figure 5.1: Rotation curve of spiral galaxy M 33 (yellow and blue points with error bars) and the

predicted one from the distribution of the visible matter (white line). The discrepancy between the two

curves can be accounted for by adding a dark matter halo surrounding the galaxy. Credit: [267]

5.1.2 Gravitational lensing

The existence of DM is also inferred by gravitational lensing effects. Since DM interacts gravita-
tionally, its mass distorts spacetime causing the bending of light coming from behind sources (for a
review see, e.g., [268]). This effect is most easily observed when light passes through a very massive
and/or dense object, such as the central region of a galaxy or a galaxy cluster. These objects act
as astrophysical lenses that bend and magnify the light coming from galaxies far behind them (an
example is shown in Fig. 5.2). This effect is commonly known as strong lensing. The distribution of
mass in the lens can be determined by the size and shape of the image and then be compared with
the visible mass.

Figure 5.2: An example of gravitational lensing. Faraway galaxies are distorted and magnified as

their light is bent by the gravitational field of a dark matter halo. Source: NASA/ESA

Perhaps the most spectacular piece of evidence in favour of DM comes from the Bullet Clus-
ter [269, 270]. It consists of two cluster galaxies which have undergone a head-on collision. The
trajectories followed by its components were dictated by their individual properties. First, the stars
contained in the galaxies, observable in visible light, were mostly unaffected by the collision and
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Figure 5.3: Shown on the left is a color image from the Magellan images of the Bullet Cluster. On

the right is the same image from Deep Chandra with the X-ray brightness of the gas component is

coded in yellow, red and blue colours. The distribution of the gravitating mass, obtained from weak

lensing reconstruction, is shown in both images by green contours. Credit: [270]

passed right through, only slightly slowing down due to gravitational interactions. Second, the
hot gas clouds, observed through their X-ray emission, interact electromagnetically and caused the
gases of both clusters to slow much more than the stars. The third component, dark matter, passed
through the interaction region and its distribution was inferred indirectly by the gravitational lens-
ing of background objects. This was the first observation of a system where the dark matter and
the baryonic component have been separated from each other and it shows that dark matter is a
separate form of matter which is, at least mostly, collisionless.

5.1.3 CMB radiation

Last but not least, the most precise prediction for the DM density is coming from the CMB spectrum.
The power spectrum of temperature anisotropies, when expanded in terms of spherical harmonics,
depends on cosmological parameters that can be determined by applying statistical methods. The
best fit to the power spectrum as observed by Planck [51] is a flat ΛCDM model, with baryonic and
dark matter density

Ωbh2 = 0.02226 ± 0.00023 , (5.3)

ΩDMh2 = 0.1186 ± 0.0020 , (5.4)

where h = H0/
(

100 km Mpc−1 s−1
)

= 0.678 ± 0.009 is the reduced Hubble parameter, with H0

denoting the Hubble constant today.

5.1.4 General remarks on dark matter

As of yet, little is known about the nature of DM as a particle. Nevertheless, any candidate for (most
of) the DM must be consistent with the following observationally-motivated constraints:

1. Relic abundance. The DM relic abundance needs to reproduce the observed cold dark matter
density of (5.4).
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2. Neutral. The DM should be electromagnetically neutral since there has been no detection of
irregular light emission.

3. Stable. Since the presence of DM is ascertained today, this implies that the corresponding par-
ticle(s) must be cosmologically stable or have a lifetime greater than the age of the Universe.
At the theoretical level, in order to achieve stable DM, one usually assumes there is a stabi-
lizing symmetry such as a Z2 under which the DM species is odd while the SM particles are
even.

4. Cold/Warm and non-relativistic today. The DM particle should be non-relativistic at matter-
radiation equality to form structures in the early Universe in agreement with the observations.
Hot DM is relativistic, cold DM is non-relativistic and warm DM starts to behave as non-
relativistic at a temperature of a few keV. Cold or warm DM are able to reproduce the current
observations, contrary to hot DM. Cosmological simulations point to the mass of DM being
above ∼ O (1 − 10 keV) [271–273].

5. Non-baryonic. If DM was baryonic then it would radiate and thus contribute to the baryonic
component measured from the CMB anisotropies. Furthermore, baryonic DM would be con-
centrated near the center of galaxies instead of forming the spherical halos around galaxies
we observe.

5.2 Dark matter candidates

Let us now briefly review some of the most studied DM candidates.

• MACHOs. Massive (astrophysical) compact halo objects (MACHOs) is the simplest possible
solution to the DM problem: dark or very faint bodies are notoriously difficult to detect, and
the galaxy may in principle be filled with a large population of this kind. The most attractive
MACHO candidate is that of a population of planet-sized objects that can be baryonic in na-
ture. These objects can in principle be detected through microlensing effects, that is, when a
MACHO passes through the line of sight of a distant star, distorting its image [274]. Experi-
ments like the MACHO Project [275], EROS [276], OGLE [277,278], and POINT-AGAPE [279]
observed millions of stars for 5 − 10 years and found O(10) events each. However, the ex-
pected number would be 3 to 5 times larger if MACHOs were to comprise all of the missing
mass of galaxies. Therefore, MACHOs can at most account for 20% of the missing mass.

• PBH. Primordial black holes are a hypothetical type of black holes that formed before the era
of nucleosynthesis due to the gravitational collapse of important density fluctuations. They
were first put forward as DM candidates in the 1970s [280–282]. Since then, various experi-
ments [275,276,283–290] have constrained a vast region of the mass parameter space between
5 × 1014 g and 1040 g. Primordial black holes lighter than 5 × 1014 g would have evaporated
due to Hawking radiation [291], while MACHOs heavier than 1040 g are ruled out by the
dynamics of the galactic disk [292].

After the observation by LIGO [293] of gravitational waves originating from the merger of
two black holes with mass ∼ 30 M⊙ ≃ 6 × 1034 g, there has been a renewed interest in PBH
as DM [294–299]. In the future, gravitational wave astronomy will be able to constrain the
properties of other exotic particles formed by new dark sector particles, whether these are
related to DM or not [300].

• SM neutrinos. Neutrinos have been advocated as a solution to the DM problem for a long time.
In the early Universe, they were in thermal equilibrium with the rest of the SM particles, until
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they decoupled when the temperature dropped below ∼ 1 − 10 MeV. Their relic abundance
is computed to be

Ωνh2 =
3
∑

i=1

mνi

93 eV
. (5.5)

The current lower limit on the neutrino masses is
∑

mν < 0.23 eV [1], which means neutrinos
cannot constitute 100% of the dark matter. Furthermore, being relativistic during decoupling,
neutrinos would act as hot DM, erasing fluctuations at scales lower than their free-streaming
length, 40 Mpc × (mν/30 eV) [301]. This would mean that galaxies formed top-down, that is,
large structures formed first, which is at odds with observations.

• Axions. As we saw in Chapter 4, axions were proposed by Peccei and Quinn (PQ) [302,303] as
a solution to the strong CP problem (see [304] for a review). After PQ symmetry breaking in
the very early Universe, the axion field is practically massless and its spatial inhomogeneities
are wiped out fast over distances of order the size of the causal horizon H−1. Later, at a tem-
perature of order a GeV, the temperature-dependent mass of the axion becomes of order the
expansion rate, mA(T) ≃ 3H(T), and the axion field begins to oscillate around the minimum
of its effective potential. This oscillation of the classical axion field corresponds to a coherent
state of numerous, extremely non-relativistic axions and can thus constitute a cold dark mat-
ter candidate [305–307]. Experiments have constrained the available mass parameter range,
see for example [308], but axions still remain viable DM candidates.

• Sterile neutrinos. As proposed by Dodelson and Widrow [309], right-handed (sterile) neu-
trinos, apart from providing mass to the active neutrinos via a seesaw mechanism (see Sec-
tion 4.5), could also serve the role of dark matter. A sterile neutrino could be warm or mod-
erately cold depending on the cosmological production mechanism, for example, produced
by oscillations between active and sterile neutrinos. Such a candidate could describe the low-
scale structure observations better than cold dark matter candidates (see, e.g., [310, 311]). The
most favorable mass range for sterile neutrino DM is around the keV scale. For example, in
the neutrino minimal Standard Model (νMSM), three sterile neutrinos are added to the SM.
In order to account for DM, one of them is at the keV scale. The other two are generally
heavier and can account for the observed light neutrino masses via a seesaw mechanism. Fur-
thermore, if they are nearly degenerate and have masses in the range 150 MeV − 100 GeV,
oscillation-induced leptogenesis can lead to baryogenesis. Thus, sterile neutrinos can also
serve as a solution to the baryon asymmetry problem. For various models on keV sterile
neutrino DM see [312] and for more details see the white paper [313].

• MOND. Despite all the model-building efforts and various types of candidates for DM, ex-
periments have still not found any evidence for the particle nature of DM. It could well be the
case that, starting at galactic scales, Newtonian gravity behaves in a different way as to what
is observed at shorter scales, and as a result the effect of DM could be mimicked. In this vein,
Milgrom proposed in 1983 the idea of “modified Newtonian dynamics" (MOND) [314]. The
essential part of this theory is the relation

µ̃

( |a|
a0

)

a = −∇ΦN , with

{

µ̃ ∼ 1 for x ≫ 1

µ̃ ∼ x for x ≪ 1 ,
(5.6)

where a is the acceleration of a particle, −∇ΦN the conventional Newtonian gravitational
field and a0 ∼ 10−10m s−2 is a natural constant. The usual Newtonian dynamics is reproduced
when the function µ̃ is unity. The advantage of the above relation is that it can reproduce
very well the galactic rotation curves and the relation between the total baryonic mass to the
asymptotic rotation velocity for spiral galaxies (encoded in the so-called Tully-Fisher relation).
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There have been attempts at incorporating MOND into more complete theories. Most notably,
in the non-relativistic regime, Eq. (5.6) can be derived with a variational principle starting
from the so-called aquadratic Lagrangian (AQUAL) [315]. There is also a complete relativistic
formulation of MOND in the context of the tensor-vector-scalar theory (TeVeS) [316]. For
reviews on these approaches see Refs. [317, 318].

Despite their successes, MOND and its generalizations fail to adequately account the observed
properties of galaxy clusters (and particularly the bullet cluster) and also no satisfactory cos-
mological model has been constructed from the theory. For more details regarding the short-
comings of MOND theories, see [319, 320]. Finally, the accurate measurement of the speed of
gravitational waves compared to the speed of light from the GW170817 signal has ruled out
many modified gravity theories which had been advocated as solutions to the dark energy
problem [321].

• WIMPs. Weakly interacting massive particles (WIMPs) are by far the most studied DM can-
didates. They can arise naturally in many well-motivated SM extensions. Furthermore, the
thermal freeze-out mechanism seems to be able to provide the DM relic abundance for rea-
sonable ranges of WIMP mass and annihilation cross section. Thermal WIMPs also have the
advantage of being testable by experiments. A WIMP is usually considered to be a particle
with mass in the range from around 2 GeV up to around 100 TeV. The lower value comes from
the so-called Lee-Weinberg bound [322] while the upper value is a rough estimate obtained
by unitarity considerations [323]. In most cases, WIMPs interact weakly with the known par-
ticles. This renders them phenomenologically attractive since they could lie within the reach
of current searches, including the LHC. In this thesis, we will only be concerned with WIMP
DM candidates. In the next section we will present the WIMP paradigm in more detail, while
Section 5.4 will be devoted to DM direct/indirect detection and collider searches.

5.3 The WIMP paradigm

The relic abundance of WIMPs is usually determined through the mechanism of thermal freeze-out
which will be detailed in the following. After the end of inflation and the assumed subsequent
reheating, all particles are in thermal equilibrium, while the Universe continues to expand. As the
temperature continues to drop, so does the interaction rate ΓDM of the DM species. Nevertheless,
thermal equilibrium cannot be maintained and, once ΓDM becomes smaller than the expansion rate
H of the Universe, a DM number density “freeze-out" occurs and dark matter particles decouple
from the rest of the light degrees of freedom that remain thermalized. Thus, the DM relic abundance
survives to the present epoch having the value that we observe today.

In this section, we first briefly review the derivation of the Boltzmann equations in an expanding
Universe. Then, employing the mechanism of thermal freeze-out for the simplest case of one WIMP
species, we obtain semi-analytical results for the DM relic density. After that, we review some of
the most studied WIMP candidates and focus on the case of vector DM. This type of WIMP arises
in extensions of the SM with new gauge symmetries. As we will see, new gauge symmetries have
the advantage of containing intrinsic discrete symmetries that can automatically stabilize the extra
gauge bosons, resulting in naturally stable DM candidates.
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5.3.1 Boltzmann equations

Let us consider a generic particle Xa whose number density evolution is governed by the Boltzmann
equation

dna

dt
+ 3Hna = Ca , (5.7)

where H is the usual Hubble parameter and Ca is the collision operator for the reactions that change
the number of Xa particles. The second term on the left-hand side of (5.7) accounts for the dilution
effect of the expansion of the Universe. If the Xa particles have no interactions then the right-hand
side is zero and we simply have naa3 = const, where a is the scale factor.

In this thesis we will only consider 2 → 2 processes, for which the collision operator can be
written as

Ca =
∑

b,c,d

Cab→cd , (5.8)

where the sum runs over all the possible reactions ab → cd. For a single reaction, the collision
operator is given by

Cab→cd = −
∫

(2π)4δ4 (pa + pb − pc − pd)dΠadΠbdΠcdΠd

[

|Mab→cd|2 fa fb − |Mcd→ab|2 fc fd
]

,
(5.9)

with fi being the phase space distribution for the particle i. The Lorentz invariant phase space
(LIPS) is defined as

dΠi := gi
d3 pi

2Ei(2π)3 , (5.10)

where gi is the number of the internal degrees of freedom of the particle i. Assuming CP (or T)
invariance, there is an equality between the two matrix elements Mab→cd = Mcd→ab, and we can
rewrite

Cab→cd = −
∫

(2π)4δ4 (pa + pb − pc − pd)dΠadΠbdΠcdΠd|Mab→cd|2 [ fa fb − fc fd] . (5.11)

Let us also assume kinetic equilibrium during freeze-out. Then, we have

fi (E, t) =
ni(t)

neq
i (t)

f eq
i (E, t) , (5.12)

with the equilibrium number density given as

neq
i = gi

∫

d3 p
(2π)3 f eq

i (p) , (5.13)

where f eq
i (p) is the thermal distribution for the species at thermal equilibrium. Energy conservation

implies that
f eq
a f eq

b = exp [− (Ea + Eb) /T] = exp [− (Ec + Ed) /T] = f eq
c f eq

d . (5.14)

Then, performing the integrals over the momenta, we obtain

Cab→cd = − 〈σvr〉ab→cd

[

nanb −
neq

a neq
b

neq
c neq

d

ncnd

]

= − 〈σvr〉cd→ab

[

neq
c neq

d

neq
a neq

b

nanb − ncnd

]

, (5.15)
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where σ is the total cross section for that particular process, vr is the relative velocity between two
DM particles, and 〈σvr〉ab→cd denotes the thermal average

〈σvr〉ab→cd :=

∫

d3 pad3 pb σ (pa, pb)ab→cd vr e−Ea/Te−Eb/T

∫

d3 pad3 pbe−Ea/Te−Eb/T
. (5.16)

Equation (5.15) contains two equivalent expressions for the collision operator describing the reac-
tion ab → cd. The first form contains the thermally averaged cross section for that particular reac-
tion, while the second form involves the thermally averaged cross section for the opposite reaction
cd → ab.

5.3.2 Thermal Averaging

Let us now compute 〈σvr〉ab→cd in an efficient manner. The first step is to compute the squared
transition matrix element |M|2 (summed over final spins and averaged over initial polarizations)
and express it in terms of the Mandelstam variables s, t, u. Note that

t − u = − (m2
a − m2

b)(m
2
c − m2

d)

s
+ 4pa(s)pc(s) cos θCM , (5.17)

where θCM is the scattering angle in the center-of-mass frame and pi(s) is the magnitude of the
3-momentum of particle i, given by

pin := pa(s) = pb(s) =

[

s
4
− m2

a + m2
b

2
+

(m2
a − m2

b)
2

4s

]1/2

, (5.18)

pout := pc(s) = pd(s) =

[

s
4
− m2

c + m2
d

2
+

(m2
c − m2

d)
2

4s

]1/2

. (5.19)

The sum of the Mandelstam variables gives s + t + u = m2
1 + m2

2 + m2
3 + m2

4, which allows us to
write

t = 1
2 [m

2
a + m2

b + m2
c + m2

d − s + (t − u)] , (5.20)

u = 1
2 [m

2
a + m2

b + m2
c + m2

d − s − (t − u)] . (5.21)

Then, using Eqs. (5.17)–(5.21) we can write |M|2 as a function of s and cos θCM.

Next, we wish to derive a simple formula for the thermal average in (5.16) by reducing the
integral from 6 dimensions to 1. Following [324, 325], for the denominator we have

∫

d3 pi e−Ei/T = 4π2Tm2
a K2

(ma

T

)

, (5.22)

where K2 is the modified Bessel functions of the second kind of order 2. Moving to the numerator,
we can first rewrite the volume element as

d3pad3pb = 4π|pa|EadEa 4π|pb|EbdEb
1
2

d cos θ , (5.23)
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where θ is the angle between pa and pb. After changing the integration variables from Ea, Eb, θ to
E+, E− and s,

E+ = Ea + Eb (5.24)

E− = Ea − Eb (5.25)

s = m2
a + m2

b + 2EaEb − 2|pa||pb| cos θ , (5.26)

the volume element becomes

d3pa

(2π)32Ea

d3pb

(2π)32Eb
=

1
(2π)4

dE+dE−ds
8

, (5.27)

and the initial integration region

{Ea ≥ ma, Eb ≥ mb, | cos θ| ≤ 1} (5.28)

transforms into

s ≥ (ma + mb)
2, (5.29)

E+ ≥
√

s, (5.30)
∣

∣

∣

∣

∣

E− − E+
m2

b − m2
a

s

∣

∣

∣

∣

∣

≤ 2pab

√

E2
+ − s

s
. (5.31)

Integrating over E− gives us
∫

dE− = 4pab

√

E2
+ − s

s
(5.32)

and the volume element takes the form

d3pa

(2π)32Ea

d3pb

(2π)32Eb
=

1
(2π)4

pab

2

√

E2
+ − s

s
dE+ds . (5.33)

Finally, performing the E+ integration and collecting everything together the thermal average takes
the simple form [326]

〈σab→cdvr〉 =
1

2m2
am2

bTK2(ma/T)K2(mb/T)

∫

∞

(ma+mb)2
dsK1(

√
s/T)pin(s)w(s) , (5.34)

where K1 is the Bessel function of the second kind of order 1 and w := EaEbσab→cdvr. The cross
section for a given process a + b → c + d is

σab→cdvr =
1

1 + δcd

pout(s)
32πspin(s)

∫

d cos θ |Mab→cd|2 . (5.35)

Finally, employing the asymptotic expansion Kn(x) = (2x/π)−1/2e−x[1 + (4n2 − 1)/(8x) + . . .] of
the Bessel functions, changing the integration variable from s to y = (s1/2 − m1 − m2)/T, and then
expanding in powers of T, we find

〈σvr〉 =
w(s0)

m1m2
− 3(m1 + m2)

2m1m2

[

w(s0)

m1m2
− 2w′(s0)

]

T +O(T2)

=
1

m1m2

[

1 − 3(m1 + m2)T
2m1m2

]

w(s)
∣

∣

s→(m1+m2)2+3(m1+m2)T
+O(T2) , (5.36)
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where s0 = (m1 + m2)2.

5.3.3 Freeze-out Mechanism

Having obtained a compact formula for the thermally averaged annihilation cross section times the
relative velocity, we now move on to examine the evolution of the number density of DM and how
it can be related to the observed relic density through the mechanism of thermal freeze-out.

Let us focus on the simplest case: one single DM particle X with mass MX, kept in thermal
equilibrium through the annihilation reaction XX → φSMφSM. The number density evolution of the
X particles is described by the Boltzmann equation which reads

dnX

dt
+ 3HnX = − 〈σvr〉

(

n2
X − neq 2

X

)

. (5.37)

All the other SM species are assumed to be in thermal equilibrium, which means we have to solve
only the above Boltzmann equation and not a coupled set of them.

For numerical purposes, it proves useful to rewrite (5.37) in terms of dimensionless quantities.
Employing the comoving density YX = nX/s (cf. Eq. (2.62)) and using the temperature as a time
variable through x := MX/T the Boltzmann equation is transformed into

dYX

dx
= − s (x = 1) 〈σvr〉

H (x = 1)
1
x2

[

Y2
X − Yeq 2

X

]

, (5.38)

where H and s are evaluated at T = MX.

The above equation is a particular form of Riccati equation for which there is no closed solu-
tion. In this regard, various numerical codes/tools have been developed [327–333] that are able
to numerically solve the Boltzmann equation(s) for a given model and compute the relic density.
Nevertheless, for the simple case under consideration here, it is possible to obtain a semi-analytical
solution which is accurate up to a 10% factor. In this approach, the Boltzmann equation is solved in
two opposite regimes. Remember that the evolution of DM depends on how the annihilation rate
compares with the expansion rate. At very early times, when the Universe was hot and dense, the
annihilation processes were very efficient since Γ ≫ H and the X particles were kept in thermal
equilibrium (YX ≃ Yeq

X ). At late times, after the temperature has dropped below the mass MX and
Γ ≪ H, the DM particles can no longer interact with each other fast enough compared to the ex-
pansion rate of the Universe, and consequently fall out of equilibrium. This behaviour is illustrated
in Fig. 5.4. In summary,

Y(x . x f ) ≃ Yeq(x) and Y(x & x f ) ≃ Yeq(x f ) , (5.39)

where x f is the freeze-out point which physically corresponds to the time when the expansion rate
of the Universe takes over the annihilation rate. The three main types of dark matter are usually
distinguished according to their freeze-out temperature: hot dark matter with x f ≪ 3, cold dark
matter with x f ≫ 3, and warm dark matter with the intermediate value x f ∼ 3.
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Coming back to the Boltzmann equation, let us further define the variable ∆X := YX − Yeq
X and

rewrite the differential equation as

d∆X

dx
= −dYeq

X

dx
− Z

x2

[

∆
2
X + 2∆XYeq

X

]

, Z :=
s (x = 1) 〈σvr〉

H (x = 1)
. (5.40)

Before freeze-out, the number density can be well approximated by the equilibrium density. We
may thus impose d∆X/dx = 0 and solve for ∆X, which gives

∆X = − x2

Z
[

∆X + 2Yeq
X

]

dYeq
X

dx
, x ≤ x f . (5.41)

After freeze-out, Yeq
X is irrelevant, and we have

YX ≃ ∆X = −
(

∫ x

x f

dx
Z
x2

)−1

, x ≥ x f . (5.42)

The last thing we need is the freeze-out value x f . Since it is defined as the time when YX ceases to
track Yeq

X , we may write

∆X(x f ) = cYeq
X (x f ) ⇒ x f ≃ ln

[

0.038c (c + 2) g
〈σvr〉 MX MPl

g1/2
∗ x1/2

f

]

, (5.43)

where c is a constant of order one and we use the early time solution. The value of x f is obtained
by solving the above equation iteratively. With x f at our disposal, we can finally determine the relic
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density today

ΩXh2 =
1.07 × 109GeV−1

g1/2
∗ MPl J(x f )

, J(x f ) =

∫

∞

x f

dx
〈σvr〉

x2 . (5.44)

What is astonishing here is that for typical weak-scale pair annihilation cross sections (σ ∼ G2
F T2,

with GF the Fermi constant), for a typical freeze-out temperature (T ∼ MX/20), and for EW-scale
masses (MX ∼ µEW ∼ 200 GeV), the thermal relic density matches the observed cosmological den-
sity [1] (ΩDMh2 ≈ 0.12). This fact has been dubbed the WIMP miracle.

5.3.4 WIMP Candidates

At this point, let us briefly review some WIMPs that have either withstood the test of time or that
have recently attracted attention.

• Lightest supersymmetric particle (LSP). One of the most appealing features of the supersymmet-
ric extensions of the SM is that, among the plethora of new particles, the LSP can be stable
due to an R-parity symmetry and thus serve the role of dark matter. For technical reasons,
supersymmetric models require two Higgs doublets. The neutral supersymmetric particles
are then

Spin 3/2 Fermion: Gravitino G̃ (5.45)

Spin 1/2 Fermions: B̃, W̃, H̃u, H̃d → Neutralinos χ1, χ2, χ3, χ4 (5.46)

Spin 0 Bosons: Sneutrinos ν̃e, ν̃µ, ν̃τ . (5.47)

The gravitino is sometimes called a super-WIMP since its interaction rate is very weak com-
pared to that of other supersymmetric DM candidates [335–339]. It can be hot, warm, or
cold DM, depending on its mass and production mechanism. Sneutrinos are not very good
DM candidates since they are underabundant (if they exist) and thus cannot constitute all of
dark matter (see however [340–342]). The most successful supersymmetric particle that can
play the role of WIMP dark matter is the lightest among the neutralinos, usually denoted as
χ := χ1 [343,344] (see also [345–348]). It is characterized by a mass range from about 2 GeV to
104 GeV and has viable detection prospects.

• Two Higgs doublet models (2HDM). In this family of SM extensions, the Higgs sector is aug-
mented with the addition of another Higgs doublet which gives rise to new charged and
neutral Higgs bosons [349] (see [350] for a review). Among these models, the simplest is the
inert doublet model (IDM) where a Z2 symmetry is imposed, under which all the SM fields
are even while the new Higgs doublet is odd [351–354]. Then, the lightest of the extra neutral
states H0 or A0 can constitute dark matter. Since these states couple to the SM Higgs boson,
this scenario could give possible signals from spin-independent scattering in direct detections
experiments.

• Little Higgs. As we saw in Section 4.4, little Higgs models are advocated as a solution to the
naturalness problem. After the global symmetry gets broken, there remains a Z2 symmetry
often called T-parity [355–357] under which the new heavy fields are odd while the SM fields
are even. Then, the lightest of these extra fields is stable and can constitute dark matter.

• The twin Higgs models. In this class of models, a copy of the SM is introduced. The Higgs
sector respects a global SU(4) symmetry which is broken at the one-loop level by radiative
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corrections. A discrete Z2 symmetry between the two sectors ensures equality of their cou-
plings. Then a WIMP DM candidate can arise from the twin sector [358–361]. The coupling of
twin DM to the SM Higgs can result in a spin-independent cross section that direct detection
experiments can search for.

• Scalar dark matter. Perhaps the simplest model that can provide a DM candidate is that of the
SM extended with a real singlet scalar field S [362–364]. The essential couplings are just its
bare mass term and a portal coupling to the SM Higgs field,

V =
1
2

µ2
SS2 +

1
2

λhsS
2|H|2 . (5.48)

The portal coupling λhs can also help in the stabilization of the vacuum. By imposing the Z2
symmetry S → −S, the singlet scalar is rendered absolutely stable and can constitute dark
matter (see [365, 366] for recent phenomenological analyses).

• Fermionic dark matter. Dirac or Majorana fermions can also play the role of dark matter.
Charging the fermions under a new global U(1) results in no mixing with the SM fermions.
Then, employing the machinery of effective field theory, non-renormalizable dimension-5 and
dimension-6 operators connect the dark and visible sectors [367–371]. The model can be made
renormalizable with the addition of a real singlet scalar field [372–375] (see also [376–378]).

• Vector dark matter (VDM). Last but not least, enlarging the gauge group of the SM can provide
for new DM candidates in the form of the extra gauge bosons [379–427]. As we will promptly
see, the main advantage of these models is that the new gauge symmetries contain intrinsic
discrete symmetries that automatically render the vector bosons stable. There is therefore no
need to put by hand any stabilizing symmetry. Since vector dark matter will be of interest to
us in this thesis, in the next subsection we will review how these intrinsic symmetries arise in
the U(1) and SU(N) gauge groups.

5.3.5 Stabilizing Symmetries from new Gauge Groups

In this subsection we will closely follow the analysis of [401] and see how stabilizing symmetries
can arise from the breaking of new Abelian and non-Abelian gauge groups.

U(1) case

The simplest way to enlarge the gauge structure of the SM is to introduce a new Abelian gauge
sector. For the U(1) to get broken, a single charged scalar Φ that obtains a VEV 〈Φ〉 = vφ/

√
2

suffices. Then, the Lagrangian of the hidden sector has the form

Lhidden = −1
4

FµνFµν + (DµΦ)†Dµ
Φ − V(Φ) , (5.49)

where Fµν is the field strength tensor of the gauge field Xµ, V(φ) is the scalar potential and we take
the charge of Φ to be +1/2. The imaginary part of Φ becomes the longitudinal component of the
gauge field which acquires the mass MX = gXvφ/2, where gX is the gauge coupling. Denoting with
φ the real part of the singlet and normalizing it canonically, Φ = (φ + vφ)/

√
2, the gauge-scalar

part of the Lagrangian becomes

∆Ls−g =
g2

X

4
vφφ XµXµ +

g2
X

8
φ2 Aµ Aµ . (5.50)
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The system is invariant under the Z2 symmetry

Xµ → −Xµ , (5.51)

which is essentially a charge conjugation symmetry. It acts on the scalar field as Φ → Φ∗ and is
preserved by both the Lagrangian and the vacuum. Due to this Z2 symmetry the massive gauge
field is stable and can therefore play the role of dark matter.

SU(2) case

We can easily extend the above considerations to the SU(2) case. The scalar field Φ now becomes a
doublet and the hidden Lagrangian has the form

Lhidden = −1
4

Fa
µνFa µν + (DµΦ)†Dµ

Φ − V(Φ) , (5.52)

with a = 1, 2, 3. In the unitary gauge, the scalar field obtains the form

Φ =
1√
2

(

0
φ + vφ

)

(5.53)

and the three gauge bosons obtain equal masses, MX1 = MX2 = MX3 =: MX = gXvφ/2. After
symmetry breaking, the scalar-gauge and gauge-gauge field interactions have the form

∆Ls−g =
g2

X

4
vφφ Xa

µXa µ +
g2

X

8
φ2 Xa

µXa µ ,

∆Lg−g = −gXǫabc(∂µXa
ν)Xµ bXν c − g2

X

4

(

(Xa
µXµ a)2 − Xa

µXa
ν Xµ bXν b

)

. (5.54)

This system possesses a Z2 × Z′
2 symmetry

Z2 : X1
µ → −X1

µ , X2
µ → −X2

µ ,

Z′
2 : X1

µ → −X1
µ , X3

µ → −X3
µ . (5.55)

This means all three Xa
µ fields are stable and can constitute dark matter.

SU(N) case

Let us now extend the above analysis to the SU(N) case and see how the Z2 × Z′
2 parity arises.

We can break SU(N) completely by the VEVs of N − 1 fields Φi in the fundamental representation.
Without loss of generality, we may gauge–transform those fields and write them as

Φ1 =













0
0
...
0
φ1













, Φ2 =















0
0
...

φ
(1)
2

φ
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2 eiρ2
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0
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, (5.56)

where φ
(j)
i and ρ

(j)
i are real.
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We identify the transformation properties of the gauge fields with those of the corresponding
SU(N) generators. We can choose the basis of the N(N − 1) off–diagonal generators Tab, T̃ab as

(Tab)ij = δiaδjb + δibδja ,

(T̃ab)ij = −iδiaδjb + iδibδja , (5.57)

where a = 1, ..., N − 1 and b = 2, ..., N. Denoting the Cartan generators by Hα, there is a Z2 that acts
as

Tab → −Tab , T̃ab → T̃ab , Hα → −Hα , (5.58)

and can be associated with complex conjugation of the group elements. This Z2 is a known outer
automorphism of SU(N).

We can define another Z2 by reflecting the off–diagonal generators containing nonzero elements
in the first row:

T1a → −T1a , T̃1a → −T̃1a ,

Tbc → Tbc , T̃bc → T̃bc (b, c ≥ 2),

Hα → Hα . (5.59)

This Z2 corresponds to the group transformation with

U = e
iπ
N diag(−1, 1, ..., 1) . (5.60)

Therefore, it is identified as an inner automorphism. Let us now focus on the upper left SU(2) block

T12, T̃12, H1 = diag(1,−1, 0, ..., 0) . (5.61)

The gauge fields X1−3
µ associated with this block transform under these two parities the same way

as the SU(2) gauge fields did under Z2 × Z′
2 in (5.55).

Note that these symmetries are preserved by gauge interactions with scalars. The first Z2 acts
on scalar fields by reflecting the complex phases. The CP invariance of the Lagrangian guarantees
this symmetry, which is also preserved by the vacuum. The second Z2 corresponds to a gauge
transformation. It acts in a multiplicative way on vectors of the form (0, a1, ..., aN−1) by introducing
an overall constant phase that cancels in all the Lagrangian terms. Therefore, it also holds in the
broken phase as well.

Now, as long as the φi contain a zero first component, the interaction vertices have only an even
number of T1a and T̃1a. The gauge fields corresponding to a > 2 are heavier than those with a = 2.
They thus decay to the lighter fields by virtue of the vertices involving T12T1k (k > 2). In this way,
only the final SU(2) remains stable. Therefore, DM is composed mostly of the aforementioned X1−3

µ

gauge fields whose stability is enforced by Z2 × Z′
2.

5.4 Dark Matter Searches

Let us close this chapter on dark matter by briefly reviewing its experimental status. The main
WIMP search strategies generally fall in three big categories:

• Direct detection searches aim at probing the scattering cross section of WIMPs off nuclei, by
seeking for nuclear recoil in some target material in a low-background underground detector.
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• Indirect detection experiments look for the byproducts of WIMP annihilations against the ex-
pected background at galactic and extragalactic scales, using Earth-based telescopes or satel-
lites.

• Collider searches may be able to infer the existence of electrically neutral particles, such as
WIMPs, through missing energy signatures in QCD jets and photons, originating from proton-
proton (LHC) or electron-positron (ILC) collisions.

In Fig. 5.5 we show a pictorial summary of the WIMP searches.

DM DM

SM SM

Portal

(a) Direct Detection

DM SM

DM SM

Portal

(b) Indirect Detection

SM DM

SM DM

Portal

(c) Collider Detection

Jets

Figure 5.5: Illustration of the DM interactions with SM particles for the three main categories of DM

searches. Credit: [334]

5.4.1 Direct detection

Over the last few years, intense activity and impressive progress has taken place in the direction of
directly detecting dark matter. A plethora of experiments [428–457] looking for elastic scatterings
of DM particles off nuclei have set strong bounds on WIMP interactions.

The WIMP-nuclei differential scattering rate can be written as

dR
dER

=
ρ0

mN MX

∫ vesc

vmin

d3
~v v fE(~v, t)

dσ

dER
, (5.62)

where ER is the nuclear recoil energy, ρ0 is the local WIMP density in the galactic halo (ρ0 =
0.3 GeV/cm3) [458–464], mN is the nucleus mass and MX the WIMP mass. ~v is the velocity of the
DM particle relative to Earth and fE(~v, t) is the WIMP velocity distribution in the Earth frame. The

minimum WIMP velocity required to produce a detectable event at energy ER is vmin =
√

mN ER/(2µ2
red),

while vesc is the velocity for which the WIMP escapes the Milky Way gravitational potential. More-
over, µred = mN MX/(mN + MX) is the WIMP-nucleus reduced mass and dR/dE is the WIMP-
nucleus differential cross section. The latter can be written as

dσ

dE
=

mN

2µ2
redv2

(

σSI F2
SI(N , ER) + σSDF2

SD(N , ER)
)

, (5.63)

where FSI and FSD are the nuclear form factors that depend on the recoil energy [346, 465–467]. σSI

and σSD are the spin-independent and spin-dependent cross sections in the zero momentum transfer
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limit, given by

σSI =
4µ2

red

π

[

Z fp + (A − Z) fn
]2 , (5.64)

σSD =
32µ2

red
π

G2
F

J + 1
J

[

ap
〈

Sp
〉

+ an 〈Sn〉
]2 , (5.65)

where J is the total spin of the nucleus, A and Z are the number of nucleons and protons, and
fp, fn and ap, an are the spin-dependent and spin-independent WIMP couplings to protons and
neutrons, respectively. For a given model these can be calculated using the corresponding effective
Lagrangian. The terms in brackets

〈

Sp,n
〉

= 〈N |Sp,n|N 〉 are the expectation values of the spin
content of the proton and neutron in the nucleus.

Most experiments are more sensitive to spin-independent interactions. This is attributed to the
A2 ∼ 104 enhancement (assuming fn = fp = 1) of the spin-independent scattering rate and also to
the fact that experiments containing nuclei with non-zero spin are difficult to scale up. In this thesis,
we will only consider models with scalar mediators between the DM particles and the quarks in the
nuclei. Therefore, we will only employ the spin-independent cross section (5.64) in our calculations.
Plugging (5.63) into (5.62), one may then compare the predicted number of recoil events with data,
and derive bounds on σSI (or σSD).

Over the last few years various hints for a DM signal have surfaced from experiments such
as DAMA/LIBRA [468, 469], CoGent [429, 430, 470, 471] and CDMS-II [436], but these come into
conflict with the null results of numerous other experiments [438, 439, 441, 443, 446–453, 453, 472–
479]. The current strongest exclusion limit in the plane of spin-independent DM-nucleon cross
section has been placed by the XENON1T experiment [479] for large DM masses; a (null) result
also corroborated by LUX [441] and PandaX-II [478]. The next generation of DM direct detection
experiments includes LZ [480,481], DarkSide-20k [435], DARWIN [481], and SuperCDMS [482] (see
Fig. 5.6). Hopefully, one or more of these experiments will be able to directly detect dark matter in
the near future.

5.4.2 Indirect detection

The nature of dark matter could potentially be inferred by astrophysical signals containing excesses
of high-energy gamma-rays, neutrinos or anti-matter (positrons, anti-protons and anti-deuterium),
produced by DM annihilations or decays. Since the annihilation rate of DM is proportional to the
number density squared, the obvious targets for studies are nearby regions where DM densities are
expected to be enhanced. In other words, the same annihilation processes that determined the DM
relic abundance in the early Universe will also take place today in galactic regions with higher DM
concentration. The most promising messengers for indirect DM detection are photons and neutri-
nos which propagate almost unperturbed through the galaxy. On the other hand, charged particles
originating in the DM halo undergo many processes (such as bremsstrahlung, inverse Compton
scattering with CMB photons, etc.) that disturb their propagation until the point of detection. The
most competitive current searches come from Earth-based telescopes such as H.E.S.S. and CTA, or
satellites such as AMS and Fermi-LAT [485–499]. Over the past few years, several potential signals
have appeared in indirect DM searches. All of these, however, are either controversial and come
into conflict with each other, or can be explained away by other astrophysical phenomena. For a
recent review on the status of indirect DM searches see [500].
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Figure 5.6: Current and future limits on DM direct detection spin-independent cross section as a

function of the DM mass. The shaded area below the orange line on the bottom corresponds to the

irreducible neutrino background [483]. Credit: [484]

5.4.3 Collider searches

Particle accelerators such as the currently operating LHC and the proposed International Linear
Collider (ILC) [501] could in principle provide us with information on particle dark matter via the
detection of mono-jet or mono-photon signals arising from XXj and XXγ production. In order to
disentangle a DM signal, experimentalists must select events with large missing energy [502] thus
reducing the SM background. However, missing energy only confirms the presence of a neutral
and stable particle1 and cannot be used to uniquely ascertain the presence of DM in a signal event.
Nevertheless, data obtained by colliders in conjunction with direct and indirect searches may be
useful and help us refine information on the properties of DM, such as its mass and couplings. For
more detailed reviews see, e.g., [503, 504].

1Stable in the context of the LHC, not necessarily cosmologically stable.
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Chapter 6

Classical Scale Invariance

After this lengthy introduction, we are finally ready to examine the main topic of this thesis, namely,
classical scale invariance (CSI). This symmetry was originally advocated as a solution to the hierarchy
problem [6], but we will see that it can also serve as a framework for the construction of minimal
extensions of the Standard Model that are able to provide solutions to its shortcomings.

In the next section, we will begin by conjecturing that the dimensionality of spacetime is the rea-
son behind the appearance of only (super-)renormalizable operators in the SM Lagrangian. Then, in
Section 6.2 we will argue that classical scale invariance is responsible for this fact and briefly review
the main features of the symmetry. In Section 6.3 we will see how a scale can be radiatively gen-
erated due to the running of the coupling constants by reviewing the famous Coleman-Weinberg
mechanism. We will also see how the electroweak scale can be made stable against radiative cor-
rections from higher scales. After that, we will generalize the Coleman-Weinberg mechanism to the
case of multiple scalar fields in Section 6.4. In Section 6.5, we will present an example of a CSI model
and proceed to discuss the main features of the various CSI models found in the literature. Finally,
in Section 6.6, we will see how the Planck scale can be dynamically generated in a CSI manner by
the VEV of a scalar field that can also drive inflation.

6.1 Renormalizability of Effective Field Theories

In the Wilsonian approach [505, 506], the Lagrangian is written as a sum of local operators

L =
∑

i

ρi M
di−4
i Oi, (6.1)

and is defined on a sphere in Euclidean momentum space with radius M. Renormalizability is then
seen as a consequence of the scaling of operators. A theory can be redefined at a lower momentum
scale M′ = M/N, if one first integrates out the high-energy modes of the fields in the operators Oi

with Euclidean momenta larger than M/N. Then, the radius of validity is rescaled to a sphere of
radius M which leads to the new operator coefficients

ρi → ρi/Ndi−4 . (6.2)

In four dimensions, operators are classified into three categories:

1. Relevant operators (d < 4):
φ†φ , ψ̄ψ , φ3 (6.3)
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2. Marginal operators (d = 4):

(∂µφ)† (∂µφ
)

, ψ̄i /Dψ , FµνFµν , ψ̄ψφ ,
(

φ†φ
)2

(6.4)

3. Irrelevant operators (d > 4):

ψ̄ψφ†φ , (ψ̄ψ)2 , (Dµφ)† (Dµφ
)

(

φ†φ
)

,
(

φ†φ
)3

(6.5)

The irrelevant or non-renormalizable operators have a negative power-law dependence on the
renormalization scale. Therefore, they do not appear naturally in the low-energy theory. The rel-
evant or super-renormalizable operators, such as the mass term of a scalar field, have a positive
power-law dependence on the renormalization scale. Therefore, the appearance of such terms with
a coefficient that is much smaller than the cut-off scale is deemed unnatural. Finally, marginal or
renormalizable operators come with dimensionless coupling constants.

If we regard the SM as an effective field theory in the Wilsonian picture then we face two choices:

• The first possibility is that the cutoff scale of the theory is given by the scale of the only relevant
operator, i.e. the Higgs mass. This means new physics such as Supersymmetry must appear
around the electroweak scale. If that were the case, however, dimension 6 (and higher) op-
erators would induce rapid proton decay since they would be suppressed only by the low
new physics scale. Of course, this cut-off scale could be concealed from experiments by a
symmetry such as R-parity.

• The second possibility is that the cut-off scale is much larger than the EW scale. Then, the
non-renormalizable operators are naturally absent. But then extreme fine-tuning would be
needed to explain why the Higgs mass is so much smaller than this scale, which leads to the
naturalness problem.

The above suggest that we cannot successfully apply the Wilsonian picture to the SM. But how
else can we explain the size of the Higgs mass and the absence of higher-order operators?

6.2 Classical scale invariance

In the SM Lagrangian all operators are renormalizable and the coupling constants are dimension-
less, with the exception of the Higgs mass parameter. Despite decades of precision flavour physics,
the SM has displayed no evidence for the existence of non-renormalizable interactions. Also, the
fact that the proton appears to be stable suggests that there are no generic higher-order operators
up to the scale of 1016 GeV.

How can we then make sense of the fact that Nature would only allow renormalizable interac-
tions to exist at the fundamental level? An interesting possibility which we explore in this thesis is
that the fundamental theory is scale invariant at the classical level. Then, in four dimensions only
operators of mass-dimension d = 4 are allowed. Any operator of dimension d 6= 4 would have
a dimensionfull coupling constant which sets a unique scale in the theory and breaks the classical
scale invariance.

We may parallelize this property to the Copernican principle in cosmology, which states that no
point in space is unique, or to the invariance of physics with respect to any chosen reference frame.
In Cosmology, while the Universe appears isotropic and homogeneous at large scales, we saw in
Chapter 3 that quantum fluctuations have generated structure. Similarly, classical scale symmetry
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prompts us to demand that no momentum scale be unique at the classical level. Then, as we will
see in the next section, quantum effects break the tree-level scale invariance due to the running of
the coupling constants which results in the interactions of particles to appear different at different
energy scales.

Coming back to the Higgs mass term, if classical scale invariance is a fundamental property
of Nature, then this operator is not allowed in a fundamental theory. We must therefore look for
a mechanism to generate this term dynamically (see Section 6.3). But before that, let us examine
classical scale invariance in more detail.

We start by considering a simple model with one real scalar field φ(x). The Lagrangian that
describes this model is

L =
1
2

∂µφ(x)∂µφ(x) +
1
2

m2φ2(x) − λφ4(x) . (6.6)

Under a scale transformation, the coordinates transform as

x → x′ = exp(ǫ)x , (6.7)

while the scalar field transforms as

φ(x) → φ′(x) = σφ(σx) , (6.8)

where σ = eǫ > 0. In general, a scale transformation is defined as φ(x) → φ′(x) = eǫaφ(eǫx), where
a is the scaling dimension of the field φ(x). In the free theory scalars have scaling dimension dφ = 1,
while fermions have dψ = 3/2. Now, under the scale transformation (6.8) the classical action

S[φ(x)] =

∫

d4x L[ ∂µφ(x), φ(x)] (6.9)

transforms as

S[σφ(σx)] =
∫

∞

−∞

d4x
[

σ2 1
2

∂xµφ(σx)∂µ
x φ(σx) +

1
2

m2σ2φ2(σx) − λσ4φ4(σx)
]

=

∫ σ(∞)

σ(−∞)
d4(σx)

[

1
2

∂(σx)µφ(σx)∂µ

(σx)φ(σx) +
1
2

σ−2m2φ2(σx) − λφ4(σx)
]

. (6.10)

Clearly, for the transformed action S[σφ(σx)] to be equal to the original one S[φ(x)], the dimen-
sionful parameter m2 has to vanish. In other words, the absence of a mass term results in a scale-
invariant theory.

Invariance of the theory under scale transformations will lead to a conserved Noether current
Θµ. We can find an expression for this current by making use of the fact that the symmetric energy-
momentum tensor may be defined as

Tµν = 2
δ

δgµν

∫

d4xL . (6.11)

Then, under scale transformations δgµν ∝ gµν, this yields

∂µΘ
µ = δS ∝ δgµνTµν

∝ gµνTµν = Tµ
µ . (6.12)

We see that the trace of the energy-momentum tensor gives the conservation of the scaling or di-
latation current. When Tµ

µ = 0, the theory is said to be scale invariant.
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So far, the analysis has been performed at tree level. We could include quantum corrections by
considering the running of the coupling constants of the theory with energy. A scale transformation
acts as g → g + ǫβ(g), where β(g) is the usual β-function. Including one-loop corrections, we find

∂µΘ
µ = Tµ

µ = δL = β(g)
∂

∂g
L . (6.13)

If the β-functions vanish, then the quantum theory is scale invariant. Alternatively, if the La-
grangian is scale-invariant but β(g) 6= 0, then scale invariance is broken and the theory is classically
scale invariant. The breaking of scale invariance is only due to the logarithmic running of coupling
constants and the scales might be generated in a dynamical way. We can therefore either view clas-
sical scale invariance as softly broken scale invariance or adopt Hill’s conjecture and view it as a
classical symmetry which becomes exact in the classical limit of h̄ → 0 [507]. When performing
calculations in CSI theories one should not use a cut-off regulator since that would break scale in-
variance [6]. Instead, one should use a regularization scheme that does not introduce the UV scale
explicitly, such as dimensional regularization. We will see that models endowed with classical scale
invariance can address the hierarchy problem and also provide solutions to various problems of the
SM (and Cosmology).

The symmetry group of a scale-invariant field theory in d dimensions is

ISO(d − 1, 1)⋊ R
+ , (6.14)

where ISO(d− 1, 1) is the Poincaré group (in Minkowski space) and R
+ is generated by dilatations.

Lorentz transformations are invariant under dilatations, while the momentum generators carry
charge 1. It is possible to extend the group of scale transformations to the conformal group

SO(d, 2) , (6.15)

by including special conformal transformations. Of course, conformal theories are scale invariant.
In d = 4, the converse statement also seems to hold, see e.g. [508]. For this reason, in the literature
classical scale invariance is sometimes referred to as classical conformal invariance.

Another related model-building approach is to consider theories with an exact quantum scale
invariance of the UV theory [509–512]. If the full quantum theory, including gravity, respects scale
invariance which is broken spontaneously, the Higgs mass would be protected from radiative cor-
rections by an exact dilatational symmetry. This solution to the hierarchy problem is similar to
Supersymmetry.

6.3 Coleman-Weinberg Mechanism

In their seminal paper in 1973 [7], S. Coleman and E. Weinberg developed a mechanism for the
dynamical generation of scale in a classically massless theory. In this Section we will see how
radiative corrections can dynamically generate nonzero vacuum expectation values and masses.
Following [7], we first review the effective action and potential. Then, we calculate the effective
potential for a classically massless U(1) theory.

6.3.1 Effective Action and Potential

In order to study the spontaneous symmetry breaking at the quantum level we define the effective
action and potential. We do this in the path integral representation of quantum field theory. The
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vacuum-to-vacuum transition amplitude for a scalar field φ, described by a Lagrangian L, in the
presence of an external source J(x), is given by

Z[J] =
∫

Dφ exp
[

i
∫

d4xL[φ] + Jφ

]

. (6.16)

Z[J] is called the generating functional of the Green’s function. From Z[J], we can define the energy
functional W[J] as

eiW[J] = Z[J] = 〈Ω|Ω〉J . (6.17)

The energy functional corresponds to the vacuum energy in the presence of the source, and it is
analogous to the Helmholtz free energy in a condensed matter system. Let us now define the mean
or “classical" field φcl as

φcl =
δW[J]
δJ(x)

=
〈Ω|φ(x)|Ω〉J

〈Ω|Ω〉J
(6.18)

The classical field is a function of spacetime and a functional of the source. The effective action
Γ[φcl] is obtained by a Legendre transform of the energy functional, namely,

Γ[φcl] = W[J]−
∫

d4xJ(x)φ(x) . (6.19)

We can expand the effective action as a series of one-particle-irreducible connected Green’s func-
tions Γi

Γ =
∑

n

1
n!

∫

d4x1 . . . d4xnΓ
(n) (x1, . . . , xn) φcl(x1) . . . φcl(xn) . (6.20)

We can also expand the effective action in powers of momentum

Γ =

∫

d4x
[

−V(φcl) +
1
2

(

∂µφcl
)2 Z(φcl) + . . .

]

, (6.21)

where V(φcl) is the effective potential which at tree level is equal to the normal scalar potential.
Varying (6.19) with respect to the classical field, we find

δΓ[φcl]

δφcl
= −J(x) . (6.22)

Spontaneous symmetry breaking occurs if φcl develops a nonzero vacuum expectation value. This
can easily happen when the source is switched off, whereby

δΓ[φcl]

δφcl

∣

∣

∣

∣

φcl 6=0
= 0 . (6.23)

From (6.21), we can see that, if we consider the vacuum state to be translationally invariant then the
above condition reduces to

δV(φcl)

δφcl

∣

∣

∣

∣

φcl 6=0
= 0 . (6.24)

The above shows that the effective potential is a very useful tool for studying the symmetry
breaking properties of a theory. By studying the minima of the effective potential we gain insight
into the structure of the vacuum. It is then interesting to explore whether radiative corrections
change the qualitative nature of the extrema of the classical potential.
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Figure 6.1: Feynman diagrams for the one-loop effective potential of scalar QED, including scalar

and gauge boson loops.

6.3.2 One-loop effective potential for classically massless U(1)

Let us now employ the above formalism to study spontaneous symmetry breaking in a classically
massless U(1) theory, where we also introduce a complex scalar field. At tree level, the U(1) sym-
metry is unbroken since the potential only has one minimum at the origin of field space. By in-
cluding radiative corrections, we want to examine whether the U(1) symmetry gets broken. The
Lagrangian of the theory has the form

L =
(

DµΦ
)†

(Dµ
Φ) +

1
4

FµνFµν −
λ

4!
|Φ|4 , (6.25)

where the complex scalar is given by Φ = (φ1 + iφ2) /
√

2 and the covariant derivative by Dµ =
∂µ − ieCW Aµ, with eCW being the gauge coupling. Fµν is the normal field strength tensor and due to
gauge invariance the effective potential depends only on φ2

cl = φ2
1 + φ2

2.

Next, we will calculate the effective potential following [7] and using a cut-off regularization
scheme with a cut-off Λ. Nevertheless, one can obtain the same results by using dimensional reg-
ularization and the MS subtraction scheme. The interactions contained in Eqs. (6.20) and (6.21) are
shown as Feynman diagrams in Fig. 6.1. We are interested in all 1PI diagrams with vanishing mo-
mentum on the external lines. Then, calculating and summing up these Feynman diagrams, we can
calculate the effective potential. We obtain

V =
1
4!

λφ4
cl −

1
2

Bφ2
cl −

1
4!

Cφ4
cl +

1
2

∫

d4k
(2π)4 ln

(

1 +
λφ2

cl

2k2

)

+
3
2

∫

d4k
(2π)4 ln

(

1 +
e2

CWφ2
cl

k2

)

, (6.26)

where B and C are counter-terms that are needed for normalization. The UV divergent integral may
be evaluated using a cut-off regularization with cut-off Λ. We obtain

V =
1
4!

λφ4
cl −

1
2

Bφ2
cl −

1
4!

Cφ4
cl +

Λ2φ2
cl

64π2

(

λ + 6e2
CW
)

+
λ2φ4

cl

256π2

(

ln
λφ2

cl

2Λ2 − 1
2

)

+
3λ2φ4

cl

64π2

(

ln
e2

CWφ2
cl

Λ2 − 1
2

)

.
(6.27)

In order to remove the divergences, we need to renormalize the theory. This can be achieved by
imposing the following renormalization conditions:

d2V
dφ2

cl
= 0 ,

d4V
dφ4

cl

∣

∣

∣

∣

∣

M

= λ . (6.28)
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The first condition characterizes a classically massless theory, while the second condition defines
the quartic coupling constant at an arbitrary renormalization scale M. Applying these conditions
on Eq. (6.27), we obtain an expression for the one-loop effective potential

V =
1
4!

λφ4
cl +

(

λ2

256π2 +
3e4

CW

64π2

)

φ4
cl

(

ln
φ2

cl

M2 − 25
6

)

. (6.29)

Let us now investigate the minima of the effective potential to determine if it admits spontaneous
symmetry breaking. Consider first the case of the pure scalar φ4 theory with eCW = 0. Then, the
effective potential has the form

V =
1
4!

λφ4
cl +

λ2

256π2 φ4
cl

(

ln
φ2

cl
M2 − 25

6

)

. (6.30)

For the above potential, a minimum away from the origin can be achieved for a non-zero φcl if

λ ln
φ2

cl

M2 ∼ −32
3

π2 . (6.31)

Such a value is outside the validity of perturbation theory since each higher order is expected to be
accompanied with a factor of λ ln φcl/M2; we must therefore view this minimum as spurious. Of
course, this result was to be expected since the only way to obtain a minimum at non-zero values
of φcl is to balance the λ-term with the λ2-term.

Moving on to scalar QED, symmetry breaking at perturbative couplings may now occur natu-
rally since we can balance λ against e4

CW. It is the interactions of the scalar field with the gauge
bosons that will dynamically break the symmetry. Since λ ∼ e4

CW is small, we will drop the λ2 term.
Keeping the λ and e4

CW terms results in the following effective potential:

V =
1
4!

λφ4
cl +

3e4
CW

64π2 φ4
cl

(

ln
φ2

cl

M2 − 25
6

)

. (6.32)

Choosing the renormalization scale at the VEV of the scalar field, M = 〈φ〉, we find that there is a
minimum for a non-zero value of φcl when

λ =
33
8π

e4
CW . (6.33)

With this relationship between the coupling constants at our disposal, we obtain a final expression
for the effective potential

V =
3e4

CW

64π2 φ4
cl

(

ln
φ2

cl

〈φ〉2 − 1
2

)

. (6.34)

One can see that this potential only depends on eCW and 〈φ〉, not on λ. In essence, we have
exchanged a dimensionless coupling constant, λ, for a dimensionful parameter, 〈φ〉. This phe-
nomenon is known as dimensional transmutation. By employing the Coleman-Weinberg mechanism,
we have generated a scale, 〈φ〉, from a theory with no input mass scales! Finally, it is easy to calcu-
late the masses of the particles in the theory. There is one massive vector boson with mass

M2
A = e2

CW 〈φ〉2 , (6.35)
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and one massive scalar boson with mass

M2
φ =

d2V
dφ2 =

3e4
CW

8π2 〈φ〉2 . (6.36)

Notice that the scalar boson mass is parametrically suppressed with respect to the gauge boson
mass.

6.3.3 Coleman-Weinberg mechanism and renormalization group running

One could argue that Eq. (6.33) implies a careful matching of the coupling constants since only when
this equation holds we get a non-zero VEV for φcl. This would seem like a strange coincidence or
an indication of fine-tuning. However, there is no fine-tuning involved in this relationship at all.
In order to understand why that is the case, let us study the renormalization group running of the
couplings contained in the theory described above. The β-functions of the relevant couplings have
the form [7]

βeCW =
deCW

dt
=

e3
CW

48π2 , (6.37)

βλ =
dλ

dt
=

1
4π2

(

5
6

λ2 − 3e2
CWλ + 9e4

CW

)

, (6.38)

where t = ln µ
M0

. Let us entertain a situation where at a high energy scale, M0, the couplings have
the arbitrary values eCW(M0) = e0 and λ(M0) = λ0, and then we evolve them down to lower
energies. Notice that βλ is positive and that the value of λ will decrease as energy decreases. When
at some point λ becomes small, the e4-term dominates, and the coupling will continue to decrease
until it eventually becomes negative. At some energy scale Mc, the value of λ will be such that

λ(Mc) =
33
8π

e4
CW(Mc) . (6.39)

This is exactly the energy scale where symmetry breaking occurs. It is the positive β-function that
drives λ negative and induces spontaneous symmetry breaking. In other words, the RG running
of the couplings triggers symmetry breaking which dynamically generates scales via dimensional
transmutation.

6.3.4 Bardeen’s Argument on the Hierarchy Problem

In 1995, Bardeen proposed [6] that classical scale invariance could address the hierarchy problem.
In Chapter 4, we saw how the hierarchy problem can be best thought of in terms of physical thresh-
old effects of massive particles and not in terms of quadratic divergences. In the proposed CSI
models there is only one scale, which is radiatively generated. Then, all masses in the theory are
parametrically related to the generated scale. Therefore, as long as this dynamically generated scale
is near the EW scale, a CSI theory does not have a hierarchy problem. Nevertheless, classical scale
invariance does not protect the Higgs mass from new large scales that can appear in quantum grav-
ity, for example. The smallness of the cosmological constant, however, suggests that gravity does
not feel the presence of vacuum expectation values of quantum fields, and similarly the smallness
of the Higgs mass suggests that quantum fields do not feel the presence of the scale of gravity. It is
thus possible that the UV theory of gravity does not affect low-energy physics.
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In the SM, there are two typical scales: the QCD and the EW scales. The QCD scale ΛQCD is
dynamically generated at a low scale where the strong gauge coupling αs diverges. The QCD scale,
then, is related to a UV scale ΛUV through

ΛQCD = ΛUV exp
(

− 2π

b0αs(ΛUV)

)

, (6.40)

where b0 is the coefficient of the βs function βs = dαs/dt = −(b0/2π)α2
s . Since the one-loop βs func-

tion is proportional to h̄, the small QCD scale ∼ ΛUV exp(−c/h̄) is generated in a non-perturbative
way and is also stable against radiative corrections of higher-energy scales. This is the famous mech-
anism of dimensional transmutation in QCD. The dimensionless parameter αs has been traded with
the dimensionful scale ΛQCD.

Classically scale-invariant theories generate scale in a similar way. Integrating the RGE of the
gauge coupling eCW (6.37) and setting the RG scale M = vφ, one finds [513]

vφ = ΛUV exp

[

−24π2

(

1
e2

CW(vφ)
− 1

e2
φ(ΛUV)

)]

≃ ΛUV exp

[

−24π2

e2
CW(vφ)

]

. (6.41)

We see that the VEV vφ is generated at a scale which is exponentially suppressed with respect to
the UV cut-off scale ΛUV . The exponential smallness of the ratio vφ/ΛUV ≪ 1 is guaranteed by
the perturbativity of the coupling constant e2

CW in the vacuum of the theory. Therefore, as long as
quantum gravity or any other UV physics do not destabilize the Higgs mass, the scales of the theory
will be naturally generated at scales exponentially smaller than the UV cut-off, and no fine-tuning
will be needed. This addresses the naturalness problem.

6.4 Gildener-Weinberg Approach

In the previous section we reviewed the Coleman-Weinberg mechanism which is only applicable in
the case when there is only one scalar field in the theory. In Chapters 7 and 8 we will be interested
with classically scale-invariant models containing multiple scalar fields. To this end, we need to em-
ploy the method of E. Gildener and S. Weinberg (GW) [514] which generalizes the CW mechanism
in the case of multiple scalar fields. In this section, we provide a brief review of the GW formalism
following closely Ref. [515].

Let us begin by considering a renormalizable gauge field theory with a set of n real scalar fields
φi and (i = 1, 2, . . . , n). We may collect φi and its n components in an n-dimensional multiplet scalar
field Φ. Then, the tree-level scale-invariant potential is generally given by

V0(Φ) =
1
4!

fijkl φiφjφkφl , (6.42)

where fijkl is fully symmetric in all its indices and stands for the quartic coupling of the potential.
Summation over repeated indices is implied.

We now need to find a direction n along which the potential has a non-trivial continuous local
minimum in the multi-dimensional field space and then perform a perturbative analysis around this
direction. There are three conditions that must be satisfied along the direction n: flat, stationary

and non-negative definite. For the flat condition, one has V0(Φ) = 0 everywhere along the ray
Φ

flat = ϕn, where ϕ is the radial distance from the origin in the field space. We may also write this
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condition as
min

Ni Ni=1
V0(N) = min

Ni Ni=1
fijkl(µ)NiNjNkNl = 0 . (6.43)

We suppose this constraint is met for a particular unit vector N = n with Φ = ϕN and for a
particular renormalization group scale µ = Λ.

The next step is to ensure that the flat direction Φ
flat = ϕn represents a stationary line. We have

∂V0(N)

∂Ni

∣

∣

∣

∣

N=n

= 0 , (equivalent to ∇V0(Φ)|
Φ=ϕn) (6.44)

which can be written explicitly as
fijkl(Λ)njnknl = 0 . (6.45)

Note that Eq. (6.45) imposes only a single constraint on the coupling fijkl . This means we are not
allowed to choose a renormalization scale to make all the couplings fijkl vanish.

Finally, in order to ensure that the stationary line is a local minimum rather than a local maxi-
mum, we consider the Hessian matrix, defined as

(P)ij :=
∂2V0(N)

∂Ni∂Nj

∣

∣

∣

∣

N=n

=
1
2

fijklnknl (6.46)

and demand that it be non-negative definite, i.e.the n× n-dimensional matrix P has either vanishing
or positive eigenvalues.

Now that we have a well-defined ray with a local minimum, let us study how quantum correc-
tions come into play. Since the tree-level potential V0(N) vanishes along the flat direction Φ

flat,
we expect the full potential of the theory to be dominated by the one-loop effective potential,
V1(Φ). Adding higher-order contributions will generate a small curvature in the radial direction
Φ

flat = ϕn, leading to a minimum along the ray where ϕ = vϕ. This reminds us of the CW mech-
anism where radiative symmetry breaking generates a nontrivial minimum. Furthermore, higher-
order corrections will also produce a small shift δΦ = vϕδn in a direction perpendicular to the flat
direction n, i.e. n · δn. The stationary condition (6.44) may then be extended to the full effective
potential containing the one-loop contribution. We have

∇ (V0(Φ) + V1(Φ))|
Φ=vϕ(n+δn) = 0 . (6.47)

We can expand this expression to the first-loop order by treating δΦ as a one-loop order parameter.
We thus obtain

v2
ϕP · δΦ + ∇V1(Φ)|

Φ=vϕn = 0 . (6.48)

The first term above can be eliminated by contracting the expression from the left with n since
n · P = 0 by virtue of (6.44) and (6.45). We thus obtain the minimization condition along the radial
direction:

n · ∇V1(Φ)|
Φ=vϕn =

∂V1(ϕn)

dϕ

∣

∣

∣

∣

ϕ=vϕ

= 0 . (6.49)

Along the flat direction Φ
flat = ϕn, the one-loop effective potential can be written as

V1(ϕn) = A(n)ϕ4 + B(n)ϕ4 ln
ϕ2

Λ2 , (6.50)



6.4. Gildener-Weinberg Approach 85

where A, B are n-dependent dimensionless constants. They are given in the MS scheme as

A =
1

64π2v4
ϕ

{

Tr

[

M4
S

(

−3
2
+ ln

M2
S

v2
ϕ

)]

+ 3 Tr

[

M4
V

(

−3
2
+ ln

M2
V

v2
ϕ

)]

−4 Tr

[

−3
2
+ ln

M2
F

v2
ϕ

]}

, (6.51)

B =
1

64π2v4
ϕ

(

Tr M4
S + 3 Tr M4

V − 4 Tr M4
F

)

, (6.52)

where MS, MV and MF correspond to tree-level scalar, vector and fermion mass matrices respec-
tively1. Minimizing (6.54) with the help of (6.49) we find

Λ = vϕ exp
(

A
2B

+
1
4

)

, (6.53)

which is a generalized version of the dimensional transmutation phenomenon we encountered in
the CW mechanism. Using this expression, we may rewrite the one-loop effective potential as

V1(ϕn) = B(n)ϕ4

(

ln
ϕ2

v2
ϕ

− 1
2

)

. (6.54)

For infinitely large values of ϕ in any field direction N the one-loop effective potential is bounded
from below if B > 0.

Now, let us consider the masses of the scalar bosons of the theory when the one-loop corrections
are taken into account. The mass matrix is given by

(

M2
0 + δM2)

ij =
∂2 (V0(Φ) + V1(Φ))

∂Φi∂Φj

∣

∣

∣

∣

Φ=vϕ(n+δn)

. (6.55)

Expanding to first order we find

(

δM2)

ij =
∂2V1(Φ)

∂Φi∂Φj

∣

∣

∣

∣

Φ=vϕn

+ vϕ fijklnkδΦl . (6.56)

Contracting the above expression with ni and nj, we are finally able to obtain the scalon mass:

M2
s = ninj

(

δM2)

ij = ninj
∂2V1(Φ)

∂Φi∂Φj

∣

∣

∣

∣

Φ=vϕn

=
∂2V1(ϕn)

∂ϕ2

∣

∣

∣

∣

ϕ=vϕn

= 8Bv2
ϕ (6.57)

where we have used (6.54) and (6.53) to arrive at the last equality in (6.57). We refer to the field s
as the pseudo-Goldstone boson of the anomalously broken scale invariance, because it is massless
at tree level when scale invariance is valid, but acquires non-zero mass at the one-loop level once
scale invariance is broken by quantum corrections.

The mass eigenvalues for the remaining massive scalar states of the theory can be easily de-
termined as long as

(

δM2
)

ij remains a small effect compared to the tree-level mass matrix
(

M2
0

)

ij.

1See [147] for a model that contains tensor masses. Also, note that the internal degrees of freedom for Majorana
fermions are half of those of the Dirac fermions. In such a case, the pre-factor −4 in front of the trace should be replaced
with −2.
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Then, their masses are obtained via:

M2
H = ñiñj

∂2V0(Φ)

∂Φi∂Φj

∣

∣

∣

∣

Φ=vϕn

= ñ · P · ñ , (6.58)

where the massive scalar directions are defined similarly to Φ
flat as Φ

H = ϕñ, with ñ being a generic
unit vector perpendicular to n. Finally, Goldstone bosons remain massless as long as V1(Φ) respects
the same global symmetries as V0(Φ).

6.5 Classically scale-invariant extensions of the Standard Model

At this point, let us present as an example a simple CSI model studied in Ref. [516] which employs
the GW formalism of the CW mechanism. The SM gauge symmetry is extended by a U(1)X gauge
symmetry with doubly X-charged scalar Φ and singly X-charged Majorana fermion N, both singlets
under the SM gauge group. The scalar potential is given by

V(H, Φ) =
λH

2
(H†H)2 +

λΦ

2
(Φ†

Φ)2 + λP(H†H)(Φ†
Φ) , (6.59)

while the extra Yukawa term is
Ly = −y

2
ΦN̄N , (6.60)

Assume that both the Higgs doublet H and the complex singlet Φ acquire VEVs

H =

(

H+

1√
2
(vH + h′ + iG)

)

, Φ =
1√
2
(vΦ + φ′ + i J) . (6.61)

Then, the scalar potential (6.59) has a flat direction when the couplings satisfy

λH(Λ)λΦ(Λ)− λ2
P(Λ) = 0 . (6.62)

Employing this constraint, we find that the VEVs are related as

v2
H

v2
Φ

= − λP

λH
. (6.63)

Since the scalars mix, we need to perform a diagonalization of the scalar mass matrix in order to
obtain the physical masses. Using an orthogonal rotation on the scalar mass eigenstates

(

h
φ

)

=

(

cos θ − sin θ
sin θ cos θ

)(

h′

φ′

)

, (6.64)

with mixing angle θ given by

sin2 θ = − λP

λH − λP
, (6.65)

we find the tree-level masses of the scalars to be

m2
h = (λH − λP)v

2
H , m2

φ = 0 . (6.66)
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Note that one eigenvalue is zero at tree level since it corresponds to the pseudo-Goldstone boson of
the broken classical scale invariance. Furthermore, the gauge boson and fermion masses are

m2
X = 4g2

Xv2
Φ , mN =

y√
2

vΦ . (6.67)

Next, let us consider the one-loop corrected potential along the flat direction, given by

V1(r) = Ar4 + Br4 ln
(

r2

Λ2

)

, (6.68)

with the radial field r is defined as
(

vH + h′

vΦ + φ′

)

= r
(

nh

nφ

)

. (6.69)

The fields nh, nφ satisfy the constraint n2
h + n2

φ = 1, with their VEVs being sin θ and cos θ, respec-
tively. Moreover, the coefficients A and B in this model have the form

A =
1

64π2v4
r

{

m4
h

(

−3
2
+ log

m2
h

v2
r

)

+ 6m4
W

(

−5
6
+ log

m2
W

v2
r

)

+ 3m4
Z

(

−5
6
+ log

m2
Z

v2
r

)

+ 3m4
X

(

−5
6
+ log

m2
X

v2
r

)

− 12m4
t

(

−1 + log
m2

t

v2
r

)

− 2m4
N

(

−1 + log
m2

N

v2
r

)

}

,

(6.70)

B =
1

64π2v4
r

(

m4
H + 6m4

W + 3m4
Z + 3m4

X − 12m4
t − 2m4

N

)

, (6.71)

with vr being the VEV of the field r. The mass of the pseudo-Goldstone boson of broken scale
invariance, also referred to as the scalon, now receives a one-loop mass correction of the form

m2
φ =

∂2V1

∂r2

∣

∣

∣

r=vr

= 8Bv2
r . (6.72)

Going back to the tree-level potential (6.59), in the mass eigenstate basis it reads

V(h, φ) =
1
2

m2
hh2 +

1
2

√

1 − λP

λH
(λP + λH)vHh3 +

1
8
(λH + λP)

2

λP
h4

+
√

−λP(λH − λP)vHh2φ +
1
2

√

−λP

λH
(λH + λP)h

3φ − 1
2

λPh2φ2 .

(6.73)

Note that due to the dimensional transmutation condition (6.63), in (6.73) quartic terms contain no
more than two scalon (φ) fields, and in cubic terms no more than one [517, 518]. This point can be
understood from the fact that the flat direction of the tree-level potential defined by the VEV of the
unit vector field (nh, nφ) is also an eigenvector of the mass matrix with zero eigenvalue. This is a
general feature of the GW formalism which sets it apart from the standard CW mechanism and has
serious phenomenological implications as we will see in Chapters 7 and 8.

At this point, let us briefly discuss the different CSI models that have been proposed in the litera-
ture. All CSI extensions of the Standard Model start with the SM Lagrangian but without the Higgs
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mass term. New field content and potentially extra gauge symmetries are then added in order to
generate scales dynamically. The generation of scale is then transmitted to the Higgs and triggers
electroweak symmetry breaking. For example, the authors of [138, 139, 144, 147, 424, 515, 518–555]
extended only the scalar sector, while the authors of [137, 253, 404, 409, 410, 412–414, 417, 513, 516,
517, 544, 556–585] extended the gauge sector as well with Abelian or non-Abelian gauge symme-
tries (either weakly or strongly coupled). Some of these models have the appealing feature that
they also predict stable and weakly interacting massive particles which can be viable candidates
for dark matter. Furthermore, new scalars which couple to the Higgs contribute through their por-
tal couplings positively to the RGE of the Higgs self-coupling and can therefore potentially solve
the vacuum stability problem. Some of these models are also able to generate masses for the SM
neutrinos.

6.6 Dynamical generation of the Planck scale

The Coleman-Weinberg mechanism could also be responsible for the dynamical generation of the
Planck scale. Recently, there have been some attempts to consider gravity in a CSI framework [110,
138, 143–147, 149, 151–155, 169, 548, 586–599]. The underlying idea is to think of the Planck mass
MPl as the VEV of a scalar field, φ, that is non-minimally coupled to gravity. In these theories,
the Einstein-Hilbert term MPlR is replaced by ξφ2R, where ξ is the non-minimal coupling, and we
obtain a scalar-tensor theory for gravity (see Section 3.3). If a VEV is dynamically generated for φ,
then vφ = MPl/

√
ξ, and we obtain the standard GR Lagrangian. The Higgs could communicate

with φ through a portal coupling λhφ. This would induce a Higgs mass of

M2
h = λhφ

M2
Pl

ξ
. (6.74)

Of course, in order to get the observed value for the Higgs mass an extremely small value of λhφ is
required. Such a value for λhφ could be considered natural since it is multiplicatively renormalized.

The scalar field φ is interesting from the point of view that it can also drive inflation. The relevant
action is Eq. (3.109), which we reproduce here for the convenience of the Reader

S =
1
2

∫

d4x
√

−g
[

F(φ)R −∇ρφ∇ρφ − 2V(φ)
]

+ Sm
(

gµν, χ
)

, (6.75)

with F(φ) = ξφ2 and V(φ) = 1
4 λφ(φ)φ4. In order to avoid problems related to the eternal inflation,

we must assume that
V(vφ)eff = 0 , (6.76)

where V(φ)eff is the one-loop effective potential of the inflaton. It can be shown that the above
condition results in

1
4

βλφ
(vφ) + λφ(vφ) = 0, (6.77)

where βλφ
is the β-function of the running quartic inflaton self-coupling λφ. We will examine a

model based on CSI inflation in Chapter 9.
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Chapter 7

Dark matter and neutrino masses from a
classically scale-invariant multi-Higgs
portal

7.1 Introduction

The work presented in this chapter was done in collaboration with Prof. Kyriakos Tamvakis and
has been published in Physical Review D [414].

In this chapter, we construct a classically scale-invariant SU(2)X extension of the Standard Model
that satisfies perturbativity and stability up to the Planck scale and also incorporates RH neutrinos
and vector dark matter, while the Higgs sector consists of three scalar fields. The symmetry break-
ing occurs in the dark sector via the Coleman-Weinberg mechanism and is then communicated to
the electroweak and neutrino sectors. The DM consists of the three extra gauge bosons, whose
interactions, apart from annihilations, also include semiannihilations.

In the next section, we present the model and analyze the stability of the tree-level potential. We
proceed to obtain possible flat directions, setting up the model for the study of symmetry breaking
through the Coleman-Weinberg mechanism. We compute the one-loop effective potential and the
resulting scalar masses. Subsequently, in Sec. 7.3, we undertake a phenomenological analysis of the
model. We identify one of the predicted scalar states with the observed Higgs boson. Then, we find
benchmark sets of values for a minimal subset of the free parameters of the model that correctly
reproduce the Higgs boson mass. After that, we scan over the rest of the parameters and obtain
masses for the dark gauge bosons, the right-handed neutrinos and one of the scalar bosons, all the
while checking that the stability and perturbativity constraints are satisfied. In Sec. 7.4, for the
same set of benchmark values, we calculate the dark matter relic density and constrain the masses
of the dark gauge bosons from both the observed relic density and the limits set by direct detection
experiments.

7.2 The model

In this section we present the model and study its properties. Employing the Coleman-Weinberg
mechanism [7] in the Gildener-Weinberg [600] formalism we minimize the tree-level potential and
find the flat direction between the VEVs of the scalar fields. Then we obtain the tree-level masses
of the scalars, one of which (we call it darkon) turns out to be massless due to the flat direction.
Including the one-loop potential, we find that radiative corrections become dominant along the flat
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direction and lift the darkon’s mass to values that can be even higher than the masses of the other
scalars.

7.2.1 The tree-level scalar potential

In order to address the open issues discussed in the Introduction we consider the Standard Model
in a classically scale invariant (CSI) framework and extend the gauge group with an additional
SU(2)X symmetry [409, 410]. In addition to the new gauge bosons, the dark sector contains a SM-
singlet scalar SU(2)X isodoublet Φ. Aiming at the problem of neutrino mass generation, we also
introduce a real scalar σ, singlet under both the SM and dark gauge groups. Right-handed neutrinos
are also included in the standard fashion as total fermionic singlets. The tree-level scalar potential,
in terms of the SM Higgs field H and the new scalars Φ, σ, has the form

V0 = λh(H†H)2 + λφ(Φ
†
Φ)2 +

λσ

4
σ4 − λhφ(H†H)(Φ†

Φ)− λφσ

2
(Φ†

Φ)σ2 +
λhσ

2
(H†H)σ2, (7.1)

where we included all possible couplings among scalars and have introduced negative signs for
the portal couplings λhφ and λφσ. Models having all mixing scalar couplings positive, i.e. both the
portals to the dark sector λhφ, λφσ and the observable sector Higgs mixing λhσ, do not lead to a
symmetry breaking flat direction and are not of interest. It is then reasonable to examine models
with the portal to the dark sector being negative. Taking the observable mixing λhσ also negative
is not necessarily interesting because it allows for a flat direction independent of the dark sector.
Therefore, we restrict the possible breaking patterns making the above choice of signs which is
sufficient for our purposes.

In addition to the scalar potential, the Lagrangian has the following extra Yukawa terms:

−LN = Yij
ν L̄i iσ2H∗Nj + H.c. + Yij

σ N̄c
i Njσ, (7.2)

where Yij
ν is the Dirac neutrino Yukawa matrix which couples the left-handed lepton doublet Li to

the SM Higgs doublet H and the right-handed neutrino Nj and Yij
σ is the right-handed Majorana

neutrino Yukawa matrix which will be assumed diagonal.

Considering the unitary gauge and the symmetry breaking pattern SU(2)L ×U(1)Y × SU(2)X →
SU(2)L × U(1)Y → U(1)em, we may replace the scalar doublets by

H =
1√
2

(

0
h

)

, Φ =
1√
2

(

0
φ

)

. (7.3)

Then, the tree-level potential takes the form

V0(h, φ, σ) =
λh

4
h4 +

λφ

4
φ4 +

λσ

4
σ4 − λhφ

4
h2φ2 − λφσ

4
φ2σ2 +

λhσ

4
h2σ2. (7.4)

The scalar potential is bounded from below if the matrix

A =
1
8













2λh −λhφ λhσ

−λhφ 2λφ −λφσ

λhσ −λφσ 2λσ













(7.5)
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is copositive, i.e. such that ηaAabηb is positive for non-negative vectors in the basis (h2, φ2, σ2). It
can be shown [601–605] that this is equivalent to the conditions

λh ≥ 0, λφ ≥ 0, λσ ≥ 0 , (7.6)

λhφ

2
√

λhλφ
≤ 1,

−λhσ

2
√

λhλσ
≤ 1,

λφσ

2
√

λφλσ
≤ 1 , (7.7)

[

2

(

1 − λhφ

2
√

λhλφ

)

(

1 +
λhσ

2
√

λhλσ

)

(

1 − λφσ

2
√

λφλσ

)]1/2

≥ −1 +
λφσ

2
√

λφλσ
+

λhφ

2
√

λhλφ
− λhσ

2
√

λhλσ
.

(7.8)
Note that the last condition is equivalent to either of the following statements:

λhφ

2
√

λhλφ
− λhσ

2
√

λhλσ
+

λφσ

2
√

λφλσ
≤ 1 , (7.9)

detA = λhλφλσ − 1
4

(

λ2
hφλσ + λ2

hσλφ + λ2
φσλh

)

+ 1
4 λhφλhσλφσ ≥ 0 . (7.10)

Therefore, vacuum stability requires the validity of the above conditions to hold at all energies up
to MP. In order to study the flat directions of the tree-level potential we may parametrize the scalar
fields as

h = ϕN1, φ = ϕN2, σ = ϕN3, (7.11)

with Ni a unit vector in the three-dimensional field space. Then, the tree-level potential attains the
form

V0 =
ϕ4

4

[

λhN4
1 + λφN4

2 + λσN4
3 − λhφN2

1 N2
2 + λhσN2

1 N2
3 − λφσN2

2 N2
3

]

. (7.12)

The condition for an extremum along a particular direction Ni = ni is [600]

∂V0

∂Ni

∣

∣

∣

∣

n

= V0(n) = 0 . (7.13)

Then, the equations giving the symmetry breaking direction are

2λhn2
1 = λhφn2

2 − λhσn2
3 , (7.14)

2λφn2
2 = λhφn2

1 + λφσn2
3 , (7.15)

2λσn2
3 = λφσn2

2 − λhσn2
1 , (7.16)

λhn4
1 + λφn4

2 + λσn4
3 − λhφn2

1n2
2 − λφσn2

2n2
3 + λhσn2

1n2
3 = 0. (7.17)

The solution of these equations in terms of the scalar couplings is

n2
1 =

4λσλφ − λ2
φσ

2λσ

(

2λφ + λhφ

)

+ λφσ

(

λhφ − λφσ

)

− λhσ

(

2λφ + λφσ

) , (7.18)

n2
2 =

2λσλhφ − λhσλφσ

2λσ

(

2λφ + λhφ

)

+ λφσ

(

λhφ − λφσ

)

− λhσ

(

2λφ + λφσ

) , (7.19)

n2
3 =

λhφλφσ − 2λφλhσ

2λσ

(

2λφ + λhφ

)

+ λφσ

(

λhφ − λφσ

)

− λhσ

(

2λφ + λφσ

) . (7.20)

Note that n2
1 + n2

2 + n2
3 = 1.
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7.2.2 The scalar masses

Assuming spontaneous breaking of the gauge and the scale symmetry via the Coleman-Weinberg
mechanism, we can write the shifted scalar fields as

h = (ϕ + v) n1, φ = (ϕ + v) n2, σ = (ϕ + v) n3. (7.21)

The individual VEVs are

〈h〉 ≡ vh = v n1, 〈φ〉 ≡ vφ = vn2, 〈σ〉 ≡ vσ = vn3 . (7.22)

From the shifted tree-level potential we can read off the scalar mass matrix

M2
0 = υ2





2λhn2
1 −n1n2λhφ +n1n3λhσ

−n1n2λhφ 2λφn2
2 −n2n3λφσ

+n1n3λhσ −n2n3λφσ 2λσn2
3



 (7.23)

in the (h, φ, σ) basis. We can now set up the diagonalization of the mass matrix (7.23) by introducing
a general rotation in terms of three parametric angles,

RM2
0 R−1 = M2

d , (7.24)

with the rotation matrix R−1 given by

R−1 =





cos α cos β sin α cos α sin β
− cos β cos γ sin α + sin β sin γ cos α cos γ − cos γ sin α sin β − cos β sin γ
− cos γ sin β − cos β sin α sin γ cos α sin γ cos β cos γ − sin α sin β sin γ



 (7.25)

and




h
φ
σ



 =





. . .

. R−1 .

. . .









h1
h2
h3



 . (7.26)

Next, we choose two of the above three angles in the rotation matrix to parametrize the total vev v
direction according to

vh = v sin α = vn1 , (7.27)

vφ = v cos α cos γ = vn2 , (7.28)

vσ = v cos α sin γ = vn3 . (7.29)

Then, M2
d is diagonal, provided that the following relations are satisfied:

tan2 α =
v2

h

v2
φ + v2

σ

=
4λφλσ − λ2

φσ

2
(

λσλhφ − λφλhσ

)

+ λφσ

(

λhφ − λhσ

) , (7.30)

tan2 γ =
v2

σ

v2
φ

=
2λhλφσ − λhφλhσ

4λhλσ − λ2
hσ

, (7.31)

tan 2β =
vhvφvσv

(

λhσ + λhφ

)

(

λφ + λσ + λφσ

)

v2
φv2

σ − λhv2
hv2

. (7.32)
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The resulting mass eigenvalues are

M2
h1

/2 =λhv2
h cos2 α cos2 β + λφv2

φ (cos β cos γ sin α − sin β sin γ)2

+λσv2
σ (cos γ sin β + cos β sin α sin γ)2

+λhφvhvφ cos α cos β (cos β cos γ sin α − sin β sin γ)

−λφσvφvσ (cos β cos γ sin α − sin β sin γ) (cos γ sin β + cos β sin α sin γ)

−λhσvhvσ cos α cos β (cos γ sin β + cos β sin α sin γ)

, (7.33)

M2
h2
= 0 , (7.34)

M2
h3

/2 = λhv2
h cos2 α sin2 β + λφv2

φ (sin β cos γ sin α + cos β sin γ)2

+λσv2
σ (cos γ cos β − sin β sin α sin γ)2

+λhφvhvφ cos α sin β (sin β cos γ sin α + cos β sin γ)

+λφσvφvσ (sin β cos γ sin α + cos β sin γ) (cos γ cos β − sin β sin α sin γ)

+λhσvhvσ cos α sin β (cos γ cos β − sin β sin α sin γ) .

(7.35)

As expected, one of these masses turns out to be zero at tree level. Regarding the rest, Mh1 and Mh3

are ultimately functions of the overall vev v and the scalar couplings. Since their exact, analytic
expressions are not necessary, we leave them as they stand.

7.2.3 Neutrinos

One of the defining properties of the present model is that it incorporates the appropriate structure
for massive Majorana neutrinos. Right-handed neutrinos in three families are introduced as singlets
of both the Standard Model and the SU(2)X dark sector. They obtain their mass as a result of broken
scale invariance through their coupling to the singlet σ that mediates between the two sectors and
obtains a nonzero vev. The Yukawa terms (7.2) that give rise to neutrino masses are

Yij
ν√
2

vhνi iσ2Nj + H.c. + Yij
σ vσN̄ c

i Nj . (7.36)

The neutrino mass matrix, being of the seesaw type, can lead to the desired scale of O(0.1 eV) for
the left-handed neutrino masses. Thus, in a (νs, Nc

i ) basis, we have









0 Yij
ν√
2
vh

Yij
ν√
2
vh Yij

σ vσ









. (7.37)

Assuming Yij
ν vh to be no more than the lightest charged lepton mass, namely O(10−4 GeV), and

taking characteristic values vσ ∼ O(1 TeV) and Yσ ∼ O(0.1), we have Yν vh ≪ Yσ vσ and we arrive
at approximate eigenvalues

MN ≈ Yij
σ vσ, mν ≈ v2

h

4vσ
Y(ik)

ν

(

Y−1
σ

)(kℓ)
Y(ℓj)

ν , (7.38)



94 Chapter 7. Dark matter and neutrino masses from a CSI multi-Higgs portal

with MN ∼ O(100 GeV) and mν ∼ O(0.1 eV). As we will see next, the right-handed neutrino
mass scale is related to the masses of the rest of the particles and cannot take arbitrary values.

7.2.4 The one-loop potential

Now, let us consider the full one-loop potential. Following the Gildener-Weinberg approach [600],
along the minimum flat direction at the scale Λ the one-loop effective potential has the form (cf.
Section 6.4)

V1(nϕ) = Aϕ4 + Bϕ4 log
ϕ2

Λ2 . (7.39)

The coefficients A and B are dimensionless parameters and are given in the MS scheme by

A =
1

64π2υ4





∑

i=1,3

M4
hi

(

−3
2
+ log

M2
i

υ2

)

+ 6M4
W

(

−5
6
+ log

M2
W

υ2

)

+ 3M4
Z

(

−5
6
+ log

M2
Z

υ2

)

+9M4
X

(

−5
6
+ log

M2
X

υ2

)

− 12M4
t

(

−1 + log
M2

t

υ2

)

− 2
3
∑

i=1

M4
Ni

(

−1 + log
M2

Ni

υ2

)]

,

(7.40)

B =
1

64π2υ4





∑

i=1,3

M4
hi
+ 6M4

W + 3M4
Z + 9M4

X − 12M4
t − 2

3
∑

i=1

M4
Ni



 . (7.41)

The minimization condition (6.49) gives

log
( υ

Λ

)

= −1
4
− A

2B
. (7.42)

Thus the one-loop effective potential becomes

V1(nϕ) = Bϕ4
[

log
ϕ2

υ2 − 1
2

]

. (7.43)

The pseudo-Goldstone boson (darkon) mass is now shifted from zero to

M2
h2
=

∂2V1(nϕ)

∂ϕ2

∣

∣

∣

∣

ϕ=υ

=
1

8π2υ2

(

M4
h1
+ M4

h3
+ 6M4

W + 3M4
Z + 9M4

X − 12M4
t − 6M4

N

)

, (7.44)

where we have assumed for simplicity that all right-handed neutrinos are degenerate in mass. Note
that the right-handed neutrino contribution to (7.44), as fermionic, enters with a minus sign. As a
result, MN cannot be too large. In what follows we shall identify the state h1 with the observed
Higgs of 125.09 GeV and choose a higher value for the h3 mass. The h2 state, although massless at
tree level, can have any mass with respect to the other scalars due to the sizable one-loop correction.
Note that radiative corrections to the tree-level masses of h1 and h3 are small enough to ignore to a
first approximation.

7.3 Phenomenological analysis

In this section we present an analysis of the phenomenological viability of the model, taking into
account theoretical and experimental constraints. Our procedure in broad terms will be as follows:
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First, we choose values from a subset of the free parameters of the model (i.e. vφ, vσ and some of the
scalar couplings), appropriate to fix the mass Mh1 to the experimental value of 125.09 GeV. Then
the Mh3 mass is automatically obtained. In order to calculate the darkon mass Mh2 we scan over
the two remaining unknown masses MX and MN in (7.44), while checking that the stability and
perturbativity conditions are satisfied. Finally, we calculate the total decay rates of all the scalar
bosons and compare the one corresponding to the Higgs boson with the bounds set by LHC.

7.3.1 Theoretical constraints

The tree-level potential (7.4) and the one-loop effective potential (7.43) have to be bounded from
below for the vacuum to be stable. For this to be valid, the stability conditions (8.7)-(7.10) need
to hold for all energies up to the Planck scale (MP = 1.22 × 1019 GeV) as well as the positivity
condition B > 0 has to be satisfied. The latter translates to

M4
h3
+ 9M4

X − 6M4
N > 12M4

t − 6M4
W − 3M4

Z − M4
h1

, (7.45)

or
M4

h3
+ 9M4

X − 6M4
N > (317.26 GeV)4 , (7.46)

where we used the values Mt = 173.34 GeV [606], MW = 80.384 GeV and MZ = 91.1876 GeV. The
above inequality implies that the masses of the extra gauge bosons MX have to be in general larger
than the masses of the right-handed neutrinos MN , unless the scalar boson mass Mh3 is considerably
larger than the right-hand side of (7.46).

Another constraint arises from the requirement that the model must remain perturbative all the
way up to MP. This can be achieved by demanding that all couplings are bounded,

all couplings < 2 π. (7.47)

To determine how the couplings of the model vary with energy, we need to solve the renormal-
ization group equations (RGEs). We present the two-loop gauge and one-loop Yukawa and scalar
RGEs below (however in our numerical analysis we use the full two-loop RGEs for all the couplings,
computed using Refs. [607–613]):

βg1 =
41
10

g3
1 +

1
(4π)2

1
50

g3
1

(

199g2
1 + 135g2

2 + 440g2
3 − 85y2

t

)

, (7.48)

βg2 = −19
6

g3
2 +

1
(4π)2

1
30

g3
2

(

27g2
1 + 175g2

2 + 360g2
3 − 45y2

t

)

, (7.49)

βg3 = −7g3
3 +

1
(4π)2

1
10

g3
3

(

11g2
1 + 45g2

2 − 260g2
3 − 20y2

t

)

, (7.50)

βgX = −43
6

g3
X − 1

(4π)2
259
6

g5
X , (7.51)

βyt = yt

(

9
2

y2
t −

17
20

g2
1 −

9
4

g2
2 − 8g2

3

)

, (7.52)

βYσ
= 4 Yσ Tr

(

YσY∗
σ

)

+ 12 YσY∗
σ Yσ , (7.53)

βλh
= −6y4

t + 24λ2
h + λh

(

12y2
t −

9
5

g2
1 − 9g2

2

)

+
27
200

g4
1 +

9
20

g2
1g2

2 +
9
8

g4
2 + 2λ2

hφ +
1
2

λ2
hσ , (7.54)

βλφ
=

9
8

g4
X − 9g2

Xλφ + 24λ2
φ + 2λ2

hφ +
1
2

λ2
φσ , (7.55)

βλσ
= −64Tr

(

YσY∗
σ YσY∗

σ

)

+ 16λσTr
(

YσY∗
σ

)

+ 18λ2
σ + 2λ2

hσ + 2λ2
φσ , (7.56)
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βλhφ
= λhφ

(

6y2
t + 12λh + 12λφ − 4λhφ −

9
10

g2
1 −

9
2

g2
2 −

9
2

g2
X

)

+ λhσλφσ , (7.57)

βλφσ
= λφσ

(

8Tr
(

YσY∗
σ

)

+ 12λφ + 6λσ − 4λφσ −
9
2

g2
X

)

+ 4λhσλhφ , (7.58)

βλhσ
= λhσ

(

6y2
t + 8Tr

(

YσY∗
σ

)

+ 12λh + 6λσ + 4λhσ −
9

10
g2

1 −
9
2

g2
2

)

+ 4λhφλφσ , (7.59)

where we defined βκ ≡ (4π)2 dκ
d ln µ .

In order to solve the RGEs we have to specify the boundary conditions for the couplings. For the
SM gauge couplings and the top quark Yukawa coupling we use the NNLO values at Mt [4, 571]:

g1(µ = Mt) =

√

5
3

(

0.35830 + 0.00011
(

Mt

GeV
− 173.34

)

− 0.00020
(

MW − 80.384 GeV
0.014 GeV

))

,

(7.60)

g2(µ = Mt) = 0.64779 + 0.00004
(

Mt

GeV
− 173.34

)

+ 0.00011
(

MW − 80.384 GeV
0.014 GeV

)

, (7.61)

g3(µ = Mt) = 1.1666 + 0.00314
(

αs(MZ)− 0.1184
0.0007

)

− 0.00046
(

Mt

GeV
− 173.34

)

, (7.62)

yt(µ = Mt) = 0.93690 + 0.00556
(

Mt

GeV
− 173.34

)

− 0.00042
(

αs(MZ)− 0.1184
0.0007

)

. (7.63)

In our numerical analysis we use as inputs the central values αs(MZ) = 0.1184, MW = 80.384 GeV
and Mt = 173.34 GeV. For the right-handed neutrino Yukawa coupling Yσ and dark gauge cou-
pling gX we define Yσ(MN) = MN/vσ and gX(MX) = 2 MX/vφ respectively. Finally, to define the
scalar couplings λi, we consider their values at the renormalization scale Λ determined by (7.42),
where the one-loop effective potential is minimized [518].

A few comments are in order regarding the behavior of the running couplings. First of all,
the SU(2)X gauge coupling gX decreases at higher energies, being asymptotically free, in a sim-
ilar fashion to the SU(2)L gauge coupling g2. On the other hand, the RGE of the right-handed
neutrino Yukawa coupling Yσ has a positive sign and forces Yσ to increase with energy until it po-
tentially reaches a Landau pole. As it turns out, this can be avoided if Yσ(MN) . 0.35. The Higgs
self-coupling λh generally behaves like the corresponding one in the SM. There, λh drops fast at
increasing energy due to the large negative contribution from the top Yukawa coupling yt, crosses
zero at some point and then becomes nearly constant up to the Planck scale. Nevertheless, in our
case, we have the freedom to choose a starting value for λh such that it remains positive inside
the whole energy range under consideration. The self-coupling of the singlet scalar λσ depends
highly on Yσ and it too can reach a Landau pole unless Yσ(MN) . 0.31. Therefore Yσ is further
constrained. Now, the dark scalar self-coupling λφ generally increases with energy, driven mainly
by the first term in (7.55). A Landau pole is avoided if we have gX(MX) . 2.51. Finally, the scalar
portal couplings (λhφ, λφσ, λhσ) are mainly multiplicatively renormalized and, as it turns out, they
do not run much if we choose initial values that are small enough.

The model contains many free parameters, therefore we need to restrict or fix most of them.
The initial eight dimensionless free parameters1 λh, λφ, λσ, λhφ, λhσ, λφσ, gX, Yσ are reduced to six
after imposing the experimental values on vh and Mh1 . Whether we use the dimensionless scalar

1We have assumed that the neutrino Dirac Yukawa coupling takes up values in the neighborhood of the corresponding
electron Yukawa coupling.
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couplings or, alternatively, the vevs through the minimization conditions (7.14)-(7.16) as input pa-
rameters, is a matter of choice. A six-dimensional parameter space is not easily managed in its full
generality. So, we propose to proceed in the following way: We leave gX and Yσ free and list char-
acteristic (benchmark) values for the scalar couplings (at Λ) and the vevs vσ and vφ that reproduce
the measured Higgs mass Mh1 = 125.09 GeV. These are shown in Table 7.1 where we also show
the value for the mass of h3 that we obtain.

Set vh[GeV] vφ[GeV] vσ[GeV] λh(Λ) λφ(Λ) λσ(Λ) λhφ(Λ) λφσ(Λ) λhσ(Λ) Mh3 [GeV]
A 246 2112 770 0.1276 0.004 0.2257 0.0036 0.06 0.001 550.62
B 246 3245 1470 0.1285 0.0005 0.0122 0.0015 0.005 0.0001 251.93
C 246 4513 2181 0.1287 0.0035 0.0642 0.001 0.03 0.001 868.15

Table 7.1: Benchmark sets of values for the model parameters able to reproduce the observed Higgs

boson mass Mh1
= 125.09 GeV.

Not all these sets are compatible with the stability of the potential. For example, with the values
in set B the stability condition (7.10) is violated. Choosing the first set of values (A), we scan over the
remaining two free parameters gX and Yσ and obtain the darkon mass Mh2 contours shown in Fig.
7.1, while checking that the stability conditions (8.7)-(7.10) are satisfied, that the one-loop potential
is bounded from below (7.46) and that all the couplings remain perturbative up to the Planck scale
(7.47).
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Figure 7.1: Parameter space scan in the plane (gX , Yσ), taking into account constraints from stability

and perturbativity. The color coding signifies the mass of the darkon Mh2
.

We also present the running of the scalar couplings in Fig. 7.2, again for the values of set A in
Table 7.1 and indicative values for gX and Yσ corresponding to MX = 725 GeV and MN = 240 GeV.
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Figure 7.2: The RG evolution of the scalar couplings at two-loop order for MN = 240 GeV and

MX = 725 GeV.

7.3.2 Experimental constraints

The three scalar fields of the present model all develop a vev and mix through the portal terms
in the scalar potential (7.4). Moreover, the corresponding mass eigenstates interact with the SM
electroweak sector, as well as with the SU(2)X gauge fields and the right-handed neutrinos. The
strength of these interactions is suppressed by the corresponding entries in the rotation matrix R
(7.25). In order to study possible signatures of the extra scalars at the LHC and future colliders, we
may construct an effective Lagrangian that contains all the interactions between the scalars and the
rest of the fields:

Lhi
eff =Ri1hi

(

2M2
W

vh
W+

µ W−µ +
M2

Z

vh
ZµZµ − Mt

vh
tt − Mb

vh
bb

− Mc

vh
cc − Mτ

vh
ττ +

αs

12πvh
Ga

µνGaµν +
α

πvh
Aµν Aµν

)

+Ri2hi
3MX

vφ
Xa

µXaµ −Ri3hi
MN

vσ
N N + Vh

ijkhihjhk ,

(7.64)

with Vh
ijk given by

Vh
ijk = Ri1

[

λhφRj2
(

vhRk2 + vφRk1
)

− λhσRj3 (vhRk3 + vσRk1)

+Rj1
(

−6λhvhRk1 + λhφvφRk2 − λhσvσRk3
)]

+Ri2
[

λhφRj1
(

vhRk2 + vφRk1
)

− λφσRj3
(

vφRk3 + vσRk2
)

+Rj2
(

−6λφvφRk2 + λhφvhRk1 − λφσvσRk3
)]

+Ri3
[

−λhσRj1 (vhRk3 + vσRk1) + λφσRj2
(

vφRk3 + vσRk2
)

+Rj3
(

−6λσvσRk3 − λhσvhRk1 + λφσvφRk2
)]

,

(7.65)

where i, j, k take the values 1, 2, 3. Note that all scalar vertices containing two or more h2’s are zero
due to the Gildener-Weinberg conditions (7.13) and the particular parametrization of the vevs (7.29)
(see also [534]). Thus, the decay rates for the decays hi → h2h2 are zero at tree level. In addition, for
all benchmark sets in Table 7.1, the decay h1 → h3h3 is kinematically forbidden. Therefore, in the
current framework there are not any lighter scalars that h1 can decay to.



7.3. Phenomenological analysis 99

Next, let us consider the total decay widths of all scalars in relation to the corresponding SM
Higgs total decay width with the same mass Γtot

hi

(

Mh = Mhi

)

:

Γ
tot
hi

= R2
i1

[

BRSM
WW + BRSM

ZZ + BRSM
gg + BRSM

γγ + BRSM
Zγ + BRSM

tt + BRSM
bb

+ BRSM
cc + BRSM

ττ

]

× Γ
SM
h

(

Mh = Mhi

)

+ Γ (hi → XX) + Γ
(

hi → NN
)

+ Γ
(

hi → hjhk
)

, (7.66)

where BRSM
χχ are the branching ratios of the SM Higgs decays into quarks, leptons or gauge bosons.

The rest of the decay rates in (7.66) are given by

Γ (hi → XX) =
3 M3

hi

32πv2
φ

√

1 − 4M2
X

M2
hi

(

1 − 4
M2

X

M2
hi

+ 12
M4

X

M4
hi

)

|Ri2|2 , (7.67)

Γ
(

hi → NN
)

=
3 M2

N Mhi

8πv2
σ

(

1 − 4M2
N

M2
hi

)3/2

|Ri3|2 , (7.68)

Γ
(

hi → hjhk
)

=
1

16π

1
(

1 + δjk
)

Mhi

√

√

√

√1 −
2(M2

hj
+ M2

hk
)

M2
hi

+
(M2

hj
− M2

hk
)2

M4
hi

∣

∣

∣
Vh

ijk

∣

∣

∣

2
. (7.69)

Using (7.66), the total decay width Γtot
h1

of a SM Higgs-like scalar h1 is given as

Γ
tot
h1

= cos2 α cos2 β Γ
SM
h1

+ Γ
inv
h1

, (7.70)

where ΓSM
h1

denotes the total decay width of the SM Higgs with mass Mh1 = 125.09 GeV and Γinv
h1

is the invisible decay width of the Higgs boson to non-SM states that are kinematically allowed.
Namely, only when MX, MN . 62.5 GeV we may have

Γ
inv
h1

= Γ (h1 → XX) + Γ
(

h1 → NN
)

. (7.71)

For completeness, we present in Table 7.2 the branching ratios of a SM Higgs with mass Mh1 =
125.1 GeV.

Decay mode Branching ratio
bb̄ 0.575

W+W− 0.216
gg 0.0856

τ+τ− 0.0630
cc̄ 0.0290

Z0Z0 0.0267
γγ 2.28 × 10−3

γZ0 1.55 × 10−3

Table 7.2: Branching ratios for a SM Higgs boson with Mh = 125.1 GeV, for which ΓSM
h = 4.08 ×

10−3 GeV [614]. We did not include the rest of the decay modes because their branching ratios are

negligible.

In order to clarify the deviation of h1 from the SM Higgs, we construct the signal strength param-
eter µh1 which can be written as

µh1 =
σ (pp → h1)

σSM (pp → h)
BR (h1 → χχ)

BRSM (h → χχ)
(7.72)
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where σ, BR are the production cross section and branching ratio of h1 and σSM, BRSM the corre-
sponding quantities for the SM Higgs. Using (7.70) and σ (pp → h1) = cos2 α cos2 β σSM (pp → h),
the expression (7.72) becomes

µh1 = cos4 α cos4 β
ΓSM

h1

Γtot
h1

. (7.73)

However, due to the smallness of R2
12 and R2

13, the invisible decay width Γinv
h1

is highly suppressed
relative to the total decay width Γtot

h1
and (7.73) simplifies to

µh1 ≃ cos2 α cos2 β. (7.74)

When the Higgs signal strengths from ATLAS and CMS [615–617] are combined [618], one obtains
the constraint

µh1 > 0.81, @ 95% C.L., (7.75)

which translates to
R11 = cos α cos β > 0.9. (7.76)

Using the benchmark values of the first set of Table 7.1 we obtain

R11 = 0.994, (7.77)

which lies comfortably within the allowed range. Thus, the state h1 behaves mostly like the SM
Higgs boson and is at the moment indistinguishable from it. Run II of the LHC may be able to
provide a check for the scalar sector of the model if a universal deviation for the SM Higgs couplings
is established and if new scalar states are discovered.

7.4 Dark matter analysis

7.4.1 Boltzmann equation and relic density

As stated in the Introduction, the rationale behind introducing the hidden or dark SU(2)X gauge
sector is twofold. First, when the new sector is spontaneously broken by means of the Coleman-
Weinberg mechanism, the electroweak scale is dynamically generated through the Higgs portal.
Second, since the SU(2)X gauge symmetry is completely broken by the vev vφ of the scalar complex
doublet Φ, the three dark gauge bosons Xa acquire equal masses MX = 1

2 gXvφ and become stable
due to an intrinsic Z2 × Z′

2 discrete symmetry, thus rendering themselves potential WIMP dark
matter candidates. SU(2)X vector dark matter has been studied in [379, 381–385, 400, 401, 404–408]
and in the context of classical scale invariance in [409–411, 413].

Next, we calculate ΩDM, following Refs. [322, 325, 619]. We start with the Boltzmann equation
which describes the evolution of the number density n of a given particle species over time. The
dark vector bosons Xa can both annihilate and semiannihilate [620–622], the relevant processes
being listed in Figs. 7.3–7.5.
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Figure 7.3: Feynman diagrams for DM annihilation to gauge bosons and fermions.

Figure 7.4: Feynman diagrams for DM annihilation to scalars.

Figure 7.5: Feynman diagrams for DM semiannihilation.

The corresponding Boltzmann equation has the form [411]

dn
dt

+ 3 H n = − 〈σv〉a

3

(

n2 − n2
eq

)

− 2 〈σv〉s

3
n
(

n − neq
)

, (7.78)

where H is the Hubble expansion parameter, neq is the number density during equilibrium and
〈σv〉 is the thermally averaged cross section of the DM particles times their relative velocity, with the
subscripts a and s denoting annihilation and semiannihilation respectively. The thermally averaged
cross section times velocity is given in the nonrelativistic approximation by [623]

〈σv〉 ≃ 1
M2

X

[

w(s)− 3
2x

(

2w(s)− w′(s)
)

]

∣

∣

∣

∣

∣

s=4M2
X

, (7.79)

with the quantity w(s) defined as

w(s) =
1
4

(

1 − δjk

2

)

β
(

s, mj, mk
)

∫

d(cos θ)

2

∑

|M (X X → all)|2, (7.80)

where
∑|M|2 stands for the matrix element squared of all possible channels, averaging over ini-

tial polarizations and summing over final spins, β
(

s, mj, mk
)

is the final-state Lorentz invariant
phase space β

(

s, mj, mk
)

= 1
8π [1 − (mj + mk)

2/s]1/2[1 − (mj − mk)
2/s]1/2 and s denotes the usual

Mandelstam variable s = (p1 + p2)2 = 2
(

M2
X + E1E2 − p1 p2 cos θ

)

. Finally, the prime stands for
differentiation with respect to s/(4M2

X) and x is defined as x ≡ MX/T. The relevant individual
cross sections necessary for the determination of the total annihilation and semiannihilation cross
sections are too lengthy to write down. However, these can be found from an analogous calculation
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in the appendix of Ref. [399]. In Fig. 7.6 we present these cross sections with respect to the dark
matter mass MX for a fixed right-handed neutrino mass at MN = 240 GeV.
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Figure 7.6: This plot shows the thermally averaged total annihilation (purple solid line) and semian-

nihilation (black solid line) cross sections times relative velocity with respect to the dark matter mass

MX. The peaks correspond to the poles of the scalar propagators.

We observe that the thermally averaged semiannihilation cross section is almost an order of
magnitude larger than the thermally averaged annihilation cross section. Also, we see two peaks
for 〈σv〉a that correspond to MX = Mh1 /2 and MX = Mh3 /2 (for set A in Table 7.1) and arise due to
the form of the scalar propagators at s = 4M2

X:

Πhi
=

i
4M2

X − M2
hi
+ iMhi

Γtot
hi

, (7.81)

with Γtot
hi

given in (7.66). There is no peak for the darkon h2 because its mass varies since it depends
on MX.

Returning to the Boltzmann equation (7.78), it is useful to express it in terms of the comoving
volume Y = n/s, Yeq = neq/s, where s is the entropy density, as

dY
dx

= − Za

3x2

(

Y2 − Y2
eq

)

− 2Zs

3x2

(

Y2 − Y Yeq
)

, Za,s ≡
s (x = 1)
H (x = 1)

〈σv〉a,s . (7.82)

The entropy density is given by s = 2π2g∗
45

M3
X

x3 and the Hubble parameter is given by H =
√

4π3g∗
45

M2
X

MP
,

in terms of the effective number of relativistic degrees of freedom g∗ at the time of freeze-out
(

x = x f
)

. In order to solve (7.82) we may consider the two extreme regions x ≪ x f and x ≫ x f ,
whereupon, defining ∆ = Y − Yeq [322] we obtain

∆ = −Y′
eq

3x2

2 (Za + Zs)
, when x ≪ x f , (7.83)

∆
′ = − ∆2

3x2 (Za + 2Zs) , when x ≫ x f , (7.84)

where the prime now denotes d/dx. Moreover, if we define ∆(x f ) = c Yeq(x f ), with c being a
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constant of order one, we can match the solutions of (7.83) and (7.84) and obtain an expression for
the freeze-out point which can be solved iteratively [322]:

x f = ln







0.038
3MX MP
√

g∗(Tf )x f

[

c (c + 2) 〈σv〉a + 2 c (c + 1) 〈σv〉s

]







. (7.85)

We find typical values between x f ≈ 25 − 26 and for the DM mass range that we consider in our
numerical analysis we use g∗ = 86.25. Also, for the constant c we use c = 1/2 [624]. The present
day relic abundance is obtained by integrating (7.84) from x = x f to x = ∞:

Y−1
∞ =

∫

∞

x f

Za + 2Zs

3x2 dx . (7.86)

Then, using the mass density of the DM particles today, ρ∞ = MXs∞Y∞ and the critical density
ρc = 3H2(∞)MP/(8π) = 1.054 × 10−5 h2 cm−3, we finally obtain the dark matter relic density

ΩXh2 =
ρ∞

ρc
h2 = 3 × 1.07 × 109 GeV−1

√
g∗ MP J(x f )

, J(x f ) =

∫

∞

x f

dx
〈σv〉a + 2 〈σv〉s

x2 , (7.87)

where we used s∞ = 2891.2 cm−3 for the present day entropy density and h = 0.673 for the Hubble
scale factor [243].

The measured value for the DM relic density is ΩDMh2 ± 1σ = 0.1187 ± 0.0017 [243], which is a
combination of the results from Planck+WP+highL+BAO. In Fig. 7.7 we scan again the parameter
space of (gX, Yσ), but this time we also include the points where the DM relic density is saturated
within 3σ (black region). We observe that the DM mass is constrained to be between MX ∼ 710 −
740 GeV.
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Figure 7.7: This plot is the same with Fig. 7.1 but we also calculated the points where the dark

gauge bosons can saturate the observed DM relic density at 3σ (black band).
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7.4.2 Dark matter direct detection

In recent years, numerous experiments have been set up aiming at directly detecting WIMP dark
matter. So far these searches have not been fruitful in actually detecting dark matter. However,
with each new experiment pushing the limits of sensitivity, DM detection could be just around the
corner.

In the present model, the DM candidate X can in principle interact with the nucleons through
the t-channel exchange of scalar bosons hi. The relevant Feynman diagram is presented in Fig. 7.8.

Figure 7.8: Feynman diagram for DM-nucleon elastic scattering.

This interaction is expressed through the following effective Hamiltonian in the limit of small
momentum exchange between the DM particle and the nucleon:

Heff =
2M2

X

vφ
XµXµ

[

∑

i

Ri2R1i

M2
hi

]

mq

vh
q̄q , (7.88)

where Ri2 and R1i are the rotation matrix elements from (7.25). The nucleonic matrix element can
be parametrized as

〈

N |∑q mqq̄q|N
〉

= fN mN , where mN =
(

mp + mn
)

/2 = 0.939 GeV is the
average nucleon mass and fN = 0.303 [365,400] is the nucleon form factor (see also [625–627]). The
spin independent dark matter elastic scattering off a nucleon cross section then has the form

σSI =
µ2

red

πv2
hv2

φ

∣

∣

∣

∣

∣

fN MXmN
∑

i

Ri2R1i

M2
hi

∣

∣

∣

∣

∣

2

, (7.89)

where µred = MXmN / (MX + mN ) is the DM-nucleon reduced mass, just µred ≈ mN in our case.

Employing (7.89), we evaluate the spin independent cross section for various MX and MN

masses and then, using the experimental results from LUX (2013) [628] and the projected limits
from XENON 1T [450], we construct the plot shown in Fig. 7.9.

We find that relatively low MX masses are excluded by LUX (2013). Nevertheless, masses above
circa 700 GeV, such as those suitable for the saturation of the measured relic density (cf. Fig. 7.7),
are favored for detection by XENON 1T.
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Figure 7.9: The plot shows the DM-nucleon cross section as a function of the DM mass for varying

MN masses respecting the stability and perturbativity constraints discussed in Sec. 7.3.1 (magenta

band). The purple solid line corresponds to the experimental limits from LUX (2013) and the black

solid line corresponds to the anticipated results for XENON 1T.
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Chapter 8

Dark matter from a classically
scale-invariant SU(3)X

8.1 Introduction

The work presented in this chapter was done in collaboration with Prof. Kyriakos Tamvakis and
has been published in Physical Review D [418].

In this chapter, we propose a CSI extension of the SM where a new SU(3)X gauge symmetry can
provide massive gauge fields that can account for the observed DM relic density. The hidden sector
will be broken completely by two scalar triplets. These will have portal couplings with the Higgs
field and will help in the stabilization of the potential. The scalar sector will consist of three Higgs-
like particles, one of which will be massless at tree level but will nevertheless acquire a nonzero
mass once we consider the full one-loop scalar potential. All eight of the extra gauge bosons will be-
come massive, while the three lightest will be stable due to their parities under an intrinsic Z2 × Z′

2
discrete symmetry of SU(3)X. These three dark gauge bosons will be our DM candidates. Because
of the rich structure of the extra gauge group, the computation of the DM relic density will include
various types of processes apart from DM annihilations, such as semiannihilations, coannihilations,
and DM conversions.

The layout of this chapter is the following: In the next section we present the model and calculate
the masses of the new fields. In Sec. 8.3 we impose various theoretical and experimental constraints
on the model. Then, in Sec. 8.4 we give a detailed analysis of the system of Boltzmann equations
that need to be solved in order to obtain the DM relic abundance, and we also focus on the role
of coannihilations and DM conversion processes. Furthermore, we examine the direct detection
prospects of the DM candidates.

8.2 The Model

We begin with a CSI version of the Standard Model and consider an SU(3)X extension of its gauge
symmetry in order to accommodate the presence of dark matter. The non-CSI version of this model
was recently considered in Ref. [401]. The breaking of the gauge symmetry SU(3)C × SU(2)L ×
U(1)Y × SU(3)X → SU(3)C × U(1)em is achieved through the Coleman-Weinberg mechanism [7].
In addition to the new SU(3)X gauge bosons, referred to as “dark" gauge bosons, the model con-
tains a pair of complex scalars Φ1(1, 1, 0; 3) and Φ2(1, 1, 0; 3) transforming as singlets under the
Standard Model gauge group and as triplets under SU(3)X, referred to as “dark" scalars. In this
section we explore the scalar and gauge sectors of the model. First, we present the tree-level poten-
tial. Employing the Gildener-Weinberg formalism [600], we minimize the tree-level potential at a
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definite energy scale which defines a flat direction among the scalar fields. Then, we compute the
tree-level scalar and dark gauge boson masses. One of the scalar bosons turns out to be massless
at tree level and corresponds to the pseudo–Nambu-Goldstone boson (pNGB) of broken scale sym-
metry. Finally, we present the one-loop effective potential which becomes dominant along the flat
direction and greatly lifts the mass of the pNGB.

8.2.1 Tree-level potential

The most general renormalizable and scale-invariant tree-level scalar potential involving the stan-
dard Higgs doublet H and the dark triplets Φ1, Φ2 is

V0 = λh(H†H)2 + λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2 − λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[

λ5

2
(Φ†

1Φ2)
2 + λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + H.c.

]

− λh1(H†H)(Φ†
1Φ1)

+ λh2(H†H)(Φ†
2Φ2) −

(

λh12(H†H)(Φ†
1Φ2) + H.c.

)

,

(8.1)

where all appearing coupling constants are taken to be real and positive. Notice that we have
assumed negative signs for the λh1 and λ3 portal couplings as the basic seed of symmetry breaking.
Out of the 12 degrees of freedom included in Φ1, Φ2, 8 are Higgsed away. Using gauge freedom
and removing 5 of them from Φ1 and 3 from Φ2, we end up in the unitary gauge with Φ1 containing
1 and Φ2 3 real degrees of freedom

Φ1 =
1√
2













0

0

v1 + φ1













, Φ2 =
1√
2













0

v2 + φ2

(v3 + φ3) + i(v4 + φ4)













. (8.2)

Assuming CP invariance implies that all vacuum expectation values (VEVs) are real and v4 = 0.
The extra SU(3)X can be completely broken if at least two of the remaining VEVs are nonzero, so
we further assume v3 = 0 for simplicity. The standard Higgs will correspond to 1 real degree of
freedom

H =
1√
2





0

vh + h



 . (8.3)

The scalar potential is further simplified if we impose invariance of the potential under the discrete
symmetry

Φ2 → −Φ2, (8.4)

which implies
λ6 = λ7 = λh12 = 0. (8.5)

Omitting the VEVs for the moment, the resulting potential is

V0 =
λh

4
h4 +

λ1

4
φ4

1 +
λ2

4
φ4

2 −
λh1

4
h2φ2

1 +
λh2

4
h2φ2

2 −
λ3

4
φ2

1φ2
2

+
λ2

4
(φ2

3 + φ2
4)

2 +

(

λ2

2
φ2

2 +
λ3

4
φ2

1 +
λ4

4
φ2

1 +
λh2

4
h2
)

(

φ2
3 + φ2

4
)

+
λ5

4
φ2

1
(

φ2
3 − φ2

4
)

. (8.6)
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The above potential is bounded from below if the following conditions [148, 604, 605] are satisfied
for all energies up to the Planck scale1:

λh ≥ 0, λ1 ≥ 0, λ2 ≥ 0, (8.7)

2
√

λhλ1 − λh1 ≥ 0, 2
√

λhλ2 + λh2 ≥ 0, 2
√

λ1λ2 − λ3 ≥ 0, (8.8)

4λhλ1λ2 −
(

λ2
h1λ2 + λ2

h2λ1 + λ2
3λh
)

+ λh1λh2λ3 ≥ 0. (8.9)

8.2.2 Scalar masses

Gauge symmetry breaking to SU(3)C ×U(1)em can arise through the nonzero VEVs vh, v1, v2. Since
the tree-level potential does not contain any dimensionful parameters, this can only occur via the
Coleman-Weinberg mechanism [7]. Having multiple scalars, we will make use of the Gildener-
Weinberg approach [600] in order to minimize the potential. The tree-level potential is minimized
at a particular renormalization scale µ = Λ which defines the flat direction among the VEVs. The
corresponding equations read [600]

λh (Λ) v4
h + λ1 (Λ) v4

1 + λ2 (Λ) v4
2 − λ3 (Λ) v2

1v2
2 − λh1 (Λ) v2

hv2
1 + λh2 (Λ) v2

hv2
2 = 0, (8.10)

2λh (Λ) v2
h − λh1 (Λ) v2

1 + λh2 (Λ) v2
2 = 0, (8.11)

2λ1 (Λ) v2
1 − λ3 (Λ) v2

2 − λh1 (Λ) v2
h = 0, (8.12)

2λ2 (Λ) v2
2 − λ3 (Λ) v2

1 + λh2 (Λ) v2
h = 0. (8.13)

Along the flat direction, the shifted scalar fields may be written as

h = (ϕ + v) nh, φ1 = (ϕ + v) n1, φ2 = (ϕ + v) n2, (8.14)

where ϕ2 = h2 + φ2
1 + φ2

2 and the overall VEV v is v2 = v2
h + v2

1 + v2
2, with n2

h + n2
1 + n2

2 = 1.

The mass matrix of the three scalar fields that participate in the symmetry breaking can be read
off from the shifted tree-level potential to be

M2
0 = v2













2λhn2
h −nhn1λh1 nhn2λh2

−nhn1λh1 2λ1n2
1 −n1n2λ3

nhn2λh2 −n1n2λ3 2λ2n2
2













(8.15)

in the (h, φ1, φ2) basis. Next, we may consider a general rotation

RM2
0 R−1 = M2

d =⇒




h
φ1
φ2



 = R−1





h1
h2
h3



 , (8.16)

1In fact, a more rigorous treatment shows that we must replace λ3 with λ3 + min [0, λ4 + λ5, λ4 − λ5] in the stability
conditions (8.7)–(8.9). However, we shall assume λ4 + λ5 > 0 and λ4 − λ5 > 0, resulting in positive masses for the fields
φ3 and φ4 [cf. (8.27)–(8.28)]. Therefore min [0, λ4 + λ5, λ4 − λ5] = 0.
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in terms of the rotation matrix R−1 given by

R−1 =





cos α cos β sin α cos α sin β
− cos β cos γ sin α + sin β sin γ cos α cos γ − cos γ sin α sin β − cos β sin γ
− cos γ sin β − cos β sin α sin γ cos α sin γ cos β cos γ − sin α sin β sin γ



 . (8.17)

Two of these rotation angles may be chosen to be related to the flat direction through

nh = sin α,
n1 = cos α cos γ,
n2 = cos α sin γ.

(8.18)

Then, M2
d is diagonal, provided that the following relation is satisfied:

tan 2β =
vhv1v2v (λh2 + λh1)

(λ1 + λ2 + λ3) v2
1v2

2 − λhv2
hv2

. (8.19)

The resulting tree-level masses include a zero eigenvalue, namely, Mh2 = 0, which corresponds to
the pNGB of broken scale invariance. Of course, this mass will be strongly lifted at the one-loop
level. The other two eigenvalues Mh1 , Mh3 are given by complicated expressions in terms of the
overall VEV, the angles, and the scalar couplings. In addition to the above three scalar states there
are also the scalar fields φ3, φ4, which we did not include in the above analysis. These fields do not
receive a VEV but obtain tree-level masses as soon as the gauge symmetry breaking is established.
As we will see in Sec. 8.2.4, radiative corrections will strongly affect only the flat direction defined
by h2, while the masses of φ3, φ4, h1, h3 will stay close to their tree-level values.

8.2.3 Dark gauge boson masses

The SU(3)X gauge fields enter the Lagrangian through the kinetic terms

LX = −1
2

tr{XµνXµν}+ |DµΦ1|2 + |DµΦ2|2, (8.20)

where the field strength tensor is defined as Xµν = ∂µXν − ∂νXµ + igX
[

Xµ, Xν

]

and the covariant
derivative of Φi has the form DµΦi = ∂µΦi + igXXµΦi.

Following Ref. [401], we consider the discrete symmetry Z2 × Z′
2 of the SU(3) generators in the

Gell-Mann basis, where the first Z2 corresponds to a gauge transformation, while the second Z′
2 is

identified with complex conjugation. The parities of the gauge fields Xµ and the scalar fields Φi un-
der Z2 × Z′

2 are summarized in Table 8.1. This discrete symmetry is important for the identification
of dark matter since the lightest fields with nontrivial discrete signatures will not be able to decay
to Standard Model matter.

Fields Z2 × Z′
2

h, φ1, φ2, φ3, X7
µ (+,+)

X2
µ, X5

µ (−,+)

X1
µ, X4

µ (−,−)

φ4, X3
µ, X6

µ, X8
µ (+,−)

Table 8.1: Gauge and scalar fields parities under Z2 × Z′
2.
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For the particular choice of nonzero v1,2 and v3,4 = 0, there is only one mixing term, X3
µXµ8,

among the dark gauge fields. The gauge boson mass matrix has the form

M2
X =

g2
X

4





























v2
2 0 0 0 0 0 0 0

0 v2
2 0 0 0 0 0 0

0 0 v2
2 0 0 0 0 − v2

2√
3

0 0 0 v2
1 0 0 0 0

0 0 0 0 v2
1 0 0 0

0 0 0 0 0 v2
1 + v2

2 0 0
0 0 0 0 0 0 v2

1 + v2
2 0

0 0 − v2
2√
3

0 0 0 0
(

4v2
1 + v2

2

)

/3





























. (8.21)

Defining the gauge boson mass eigenstates as
(

X3′
µ

X8′
µ

)

=

(

cos δ sin δ
− sin δ cos δ

)(

X3
µ

X8
µ

)

, (8.22)

with the mixing angle given by

tan 2δ =

√
3v2

2

2v2
1 − v2

2
, =⇒ tan δ =

−2v2
1 + v2

2 ± 2
√

v4
1 − v2

1v2
2 + v4

2√
3v2

2

, (8.23)

we obtain the masses shown in Table 8.2. In the following, we keep only the “ + ” solution in (8.23)
corresponding to tan δ being small and positive for v2

1 ≫ v2
2.

Gauge fields Mass2

X1
µ

1
4 g2

Xv2
2

X2
µ

1
4 g2

Xv2
2

X3′
µ

1
4 g2

Xv2
2

(

1 − tan δ√
3

)

X4
µ

1
4 g2

Xv2
1

X5
µ

1
4 g2

Xv2
1

X6
µ

1
4 g2

X

(

v2
1 + v2

2

)

X7
µ

1
4 g2

X

(

v2
1 + v2

2

)

X8′
µ

1
3 g2

Xv2
1

(

1 − tan δ√
3

)−1

Table 8.2: Dark gauge boson masses.

In addition to the above gauge boson mass terms, the scalar kinetic terms also give a scalar/gauge-
boson mixing

igXXa
µ(∂

µ
Φi)

†Ta
Φi + H.c. = gX

v2

2

(

∂µφ4 X6
µ − ∂µφ3X7

µ

)

. (8.24)

This leads to a redefinition of the two scalar and gauge fields involved according to

X̃6
µ = X6

µ +
2

gX

v2

v2
1 + v2

2
∂µφ4 , X̃7

µ = X7
µ −

2
gX

v2

v2
1 + v2

2
∂µφ3 , (8.25)

φ̃3 =
v1

√

v2
1 + v2

2

φ3 , φ̃4 =
v1

√

v2
1 + v2

2

φ4 . (8.26)
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The normalized masses for X6, X7 are the ones entering in Table 8.2, while the resulting masses of
the canonical scalar fields φ̃3, φ̃4 are

M2
φ̃3

=
1
2
(λ4 + λ5)

(

v2
1 + v2

2
)

, (8.27)

M2
φ̃4

=
1
2
(λ4 − λ5)

(

v2
1 + v2

2
)

. (8.28)

For v2
1 ≫ v2

2, the mixing angle δ is small and positive [cf. (8.23)], while X1,2
µ and X3′

µ are nearly
degenerate in mass and also the lightest of the eight dark gauge bosons. In addition, because of their
parities under Z2 × Z′

2 (cf. Table 8.1), they are stable and can therefore constitute DM candidates.
Note, however, that φ̃4 and X3′

µ have the same parities under Z2 × Z′
2. This means that the decay

process X3′ → φ̃4 + SM is possible if Mφ̃4
< MX3′ , and in that case φ̃4 can be a DM candidate instead

of X3′
µ . However, in the following we will study the case Mφ̃4

> MX3′ and relegate this alternative
scenario to future work.

8.2.4 One-loop potential

The one-loop potential, along the flat direction, at a renormalization scale µ = Λ where the tree-
level potential is minimized, takes the form

V1(nϕ) = A ϕ4 + B ϕ4 ln(ϕ2/Λ
2) , (8.29)

where the dimensionless coefficients A, B are given (in the MS scheme) by

A =
1

64π2υ4





∑

i=h1,h3,φ̃3,φ̃4

M4
i

(

−3
2
+ log

M2
i

υ2

)

+ 6M4
W

(

−5
6
+ log

M2
W

υ2

)

+ 3M4
Z

(

−5
6
+ log

M2
Z

υ2

)

+3
8
∑

i=1

M4
Xi

(

−5
6
+ log

M2
Xi

υ2

)

− 12M4
t

(

−1 + log
M2

t

υ2

)

]

,

(8.30)

B =
1

64π2υ4





∑

i=h1,h3,φ̃3,φ̃4

M4
i + 6M4

W + 3M4
Z + 3

8
∑

i=1

M4
Xi − 12M4

t



 . (8.31)

Note that the model, with its present minimal field content, does not accommodate neutrino
mass generation through a right-handed neutrino seesaw mechanism. Nevertheless, right-handed
neutrinos can still be present and obtain their mass from a separate sector, the minimal example
being a real scalar field that couples only to neutrinos. Of course, with the given symmetries of the
model, if such a singlet exists, its couplings with the rest of the scalars cannot be forbidden a priori.
Nevertheless, it could be assumed that these couplings are quite small, in which case they would
not affect the analysis of the rest of the model.

Minimizing the one-loop effective potential, we obtain

V1(nϕ) = B ϕ4
[

ln
(

ϕ2

v2

)

− 1
2

]

. (8.32)
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An immediate consequence of the one-loop radiative corrections is to lift the pNGB mass to the
nonzero value

M2
h2

=
∂2V1

∂ϕ2

∣

∣

∣

∣

ϕ=v
=

1
8π2v2

(

M4
h1
+ M4

h3
+ M4

φ̃3
+ M4

φ̃4
+ 6M4

W + 3M4
Z + 3

8
∑

i=1

M4
Xi − 12M4

t

)

.

(8.33)

Finally, note that the one-loop corrections to the masses of φ̃3,4 are exactly zero, while the correc-
tions to the masses of h1,3 are very suppressed and can be safely ignored to a first approximation.2

8.3 Phenomenological analysis

In this section we study the phenomenological viability of the model. First we examine the inter-
relationship among the masses of the dark gauge bosons and scalars. Then, scanning over a range
of values for the scalar couplings and the dark gauge coupling we find benchmark points that sat-
isfy stability and perturbativity constraints, as well as bounds set by the first run of the LHC and
measurements of the electroweak precision observables.

The Coleman-Weinberg mechanism is successfully realized if the mass of the dark scalar Mh2 [cf.
(8.33)] turns out to be positive. For this to be true we must have B > 0 [cf. (8.32)], or

M4
h3
+ M4

φ̃3
+ M4

φ̃4
+ 3

8
∑

i=1

M4
Xi

> (317.26 GeV)4 . (8.34)

The scalar state h1 (that we identify with the Higgs boson) has analogous couplings to the SM
particles as a SM Higgs, but rescaled by the factor R11 from the rotation matrix (8.17),

gh1χχ = R11gSM
hχχ, (8.35)

with χχ denoting a pair of SM particles. Constructing the signal strength parameter for h1 [414],

µh1 =
σ (pp → h1)

σSM (pp → h)
BR (h1 → χχ)

BRSM (h → χχ)
≃ cos2 α cos2 β, (8.36)

and employing the bound set by the first run of the LHC [615–618]:

µh1 > 0.81, @ 95% C.L., (8.37)

we can constrain the matrix element R11 as

R11 = cos α cos β > 0.9 , (8.38)

meaning that the angles α, β cannot be too large.

Another experimental constraint arises from the measurements of the oblique parameters S, T,
and U. Setting U = 0, we have [243]

S = 0.00 ± 0.08, T = 0.05 ± 0.07. (8.39)

In this model, the above parameters are given by the formulas presented in Appendix A.

2See [528] for a complete treatment in a relevant CSI model.
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We can further constrain the model by requiring the stability of the scalar potential and the per-
turbativity of the couplings as they evolve with the renormalization scale. To this end, we consider
the scalar couplings (except λh) and the gauge coupling gX and generate random values inside the
intervals shown below,

λ1, λ2, λ3, λh1, λh2, λ4, λ5 ∈
[

10−6, 1
]

, gX ∈ [0, 3] . (8.40)

The scalar couplings are specified at the renormalization scale Λ where the tree-level potential is
minimized, whereas the dark gauge coupling is defined at the scale of the lightest dark gauge boson
gX(MX3′ ).

Then, we calculate the VEVs v1, v2 and the Higgs self-coupling λh from the minimization con-
ditions (8.10)–(8.13). At the first stage, we keep only the points that reproduce the measured Higgs
mass Mh1 = 125.09 ± 0.24 GeV. Subsequently, we solve numerically the two-loop RGEs (cf. Ap-
pendix B) and keep only the values of the couplings that remain perturbative up to the Planck scale
and also satisfy the vacuum stability conditions (8.7)–(8.9), as well as the bound set by LHC (8.38)
and the constraints on the parameters S and T (8.39). We present five of these benchmark points in
Table 8.3.

Most of these benchmark points (BPs) contain values for the dark VEVs for which v2
1 ≫ v2

2.
This results in the masses of the dark gauge bosons X1

µ, X2
µ, X3′

µ being nearly degenerate, while the
masses of the rest of the dark gauge bosons are well above them. Nonetheless, in BP2, we have also
included the case v1 ≃ v2. In this case, the mass of X3′

µ is fairly lower than the masses of X1
µ and

X2
µ, which are now close to the masses of X4

µ and X5
µ, while the masses of X6

µ and X7
µ become nearly

degenerate with the mass of X8′
µ . Therefore, in the case v1 ≃ v2, we have

M2
X3′ ≃

2
3

M2
X1,2 ≃

2
3

M2
X4,5 ≃

1
3

M2
X6,7 ≃ 1

3
M2

X8′ . (8.41)

As we will see in the next section, the case v1 ≃ v2 is distinct in its dark matter analysis.

Regarding the scalar bosons and the pNGB h2 in particular, we observe that its mass depends
highly on the values of the VEVs v1, v2 and the dark gauge coupling gX, or equivalently on the
masses of the dark gauge bosons and the rest of the scalars [cf. (8.33)]. For example, large values
for the VEVs and gX produce a large mass for h2, as can be seen from BP4 in Table 8.3.

Finally, the dark gauge boson mass spectrum for both cases v2
1 ≫ v2

2 and v1 ≃ v2 is shown
schematically in Fig. 8.1.

8.4 Dark matter analysis

Recent astrophysical measurements [1] have corroborated the now well-established fact that ∼ 80%
of the nonrelativistic matter in the Universe is in a form that remains a mystery to us and cannot
be explained by the known particles and forces. This “dark matter" (DM) could be constituted of
scalar bosons, fermions, vector bosons, a combination of the above, or even something more exotic.
Here we will focus on vector DM [379–411, 413–417].

Whatever the case may be, a DM candidate particle should be stabilized by some kind of sym-
metry, such that it may not decay to the SM particles. The simplest possibility of a stabilizing
symmetry is that of a Z2 discrete symmetry. A neutral and weakly interacting massive particle can
be a DM candidate if it is the lightest Z2 or Z3-odd particle in a given model [629–634]. In order to
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BP1 BP2 BP3 BP4 BP5

λ1 (Λ) 0.00008 0.0112 0.0014 0.00017 0.00015
λ2 (Λ) 0.0706 0.01073 0.0689 0.12129 0.00126
λh1 (Λ) 0.00292 0.0237 0.00282 0.0006 0.0016
λh2 (Λ) 0.04116 0.00323 0.00031 0.00109 0.00344
λ3 (Λ) 0.00459 0.0211 0.0196 0.00911 0.00088
λ4 (Λ) 0.3104 0.3317 0.2878 0.3363 0.3564
λ5 (Λ) 0.0052 0.000003 0.000011 0.13762 0.00167
λh (Λ) 0.13811 0.13201 0.12804 0.12876 0.13295

gX 1.25 0.88 0.81 2.01 0.29
vh 246.22 246.22 246.22 246.22 246.22
v1 3180.05 882.78 2365.61 5272.32 6610.41
v2 557.43 869.86 891.70 1021.43 3898.50

Mh1 125.07 125.02 125.17 125.08 125.14
Mh2 588.86 97.82 189.80 2500.34 227.22
Mh3 215.81 184.42 353.78 512.43 228.37
Mφ̃3

1282.51 504.70 958.99 2614.19 3247.10
Mφ̃4

1261.21 504.69 958.95 1692.65 3231.93
MX1,2 349.65 382.29 361.14 1028.25 560.84
MX3′ 348.29 314.41 354.20 1023.32 531.48
MX4,5 1994.73 387.97 958.07 5307.55 950.98
MX6,7 2025.14 544.67 1023.88 5406.23 1104.05
MX8′ 2312.35 544.70 1127.97 6158.13 1158.77

Λ 1747.67 407.03 834.25 4704.95 1838.82
ΩXh2 0.0365 0.0670 0.1136 0.0952 6.19
σeff

1,2 2.2 × 10−45 1.0 × 10−47 1.5 × 10−47 8.7 × 10−48 0
σeff

3 1.2 × 10−44 7.7 × 10−46 2.8 × 10−46 5.5 × 10−47 1.5 × 10−46

Table 8.3: Benchmark points for the model parameters that satisfy the stability and perturbativity

constraints, as well as the bounds set by LHC and measurements of the oblique parameters. The

VEVs, the masses, and Λ are in GeV units. For completeness, we have also included the values

of the total relic density of X1,2,3′ and their effective scattering cross sections off a nucleon (in cm2

units) which we discuss in Secs. 8.4.1 and 8.4.2.
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MX1,2MX3'

MX4,5

MX6,7

MX8'

MX1,2

MX3'

MX4,5

MX6,7 MX8'

Figure 8.1: Mass spectra of dark gauge bosons for the cases v2
1 ≫ v2

2 (left) and v1 ≃ v2 (right).

accommodate more DM candidates, one should consider a ZN (N ≥ 4) [621, 635–637] or a product
of two or more ZN’s as the stabilizing symmetry [422, 638–643].

The intrinsic Z2 × Z′
2 symmetry of the dark sector of the model, not shared by the SM fields,

singles out the particles with nontrivial signatures under this symmetry as a stable sector without
any other symmetry requirements. The lightest of the dark gauge bosons then, are possible dark
matter candidates. Under our assumptions, the lightest of them are the dark gauge bosons X1

µ, X2
µ

and X3′
µ .

The present model allows for various processes that are able to change the number density of
dark matter particles. These are the following:

(a) Annihilation into SM. All dark gauge bosons interact with the scalars hi (i = 1, 2, 3), which in
turn communicate with the SM fields. Thus, the DM candidates X1,2,3′

µ can annihilate to the SM
particles through the Higgs portal.

(b) Semiannihilation. The non-Abelian nature of the extra gauge symmetry allows the processes
XaXb → Xchi to occur. In this case, the final number of DM particles is one less than the initial
number, as opposed to the case of annihilations where the number of DM particles is changed
by two units. Semiannihilation processes are of great interest regarding DM phenomenology
since they can dominate in much of the parameter space.

(c) Coannihilation. This kind of process has been thoroughly investigated in the context of super-
symmetric DM models.3 There, the lightest neutralino particle (LSP) is a DM candidate and
can potentially coannihilate with the next-to-lightest supersymmetric particle (NLSP) if their
respective masses are close enough. A similar situation arises in the dark sector of the model
under consideration when v1 ≃ v2, since in that case the masses of the DM candidates X1

µ and
X2

µ are close to those of X4
µ and X5

µ (cf. Fig. 8.1) and may in principle coannihilate with them
through the processes X1X4,5 → X7,6hi and X2X4,5 → X6,7hi. Notice, however, that we can-
not employ the usual condition between the LSP and NLSP(s) number densities before, during,
and after freeze-out, namely ni/nj = neq

i /neq
j , since its validity cannot be guaranteed when

semiannihilations are also involved (see Ref. [620] for more details).

3See, for example, Ref. [644] and references therein.
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(d) DM conversion. In multicomponent DM systems the various DM candidates have different
masses in general. Then, if the relevant interactions are allowed, a DM species may be con-
verted to another. In this model the three DM candidates X1,2,3′

µ are nearly degenerate in mass,

and such processes
(

X1,2X1,2 → X3′X3′
)

are generally phase space suppressed. However, again

in the limiting case v1 ≃ v2 the mass splitting of X3′
µ with regard to X1

µ and X2
µ can have a sig-

nificant effect in today’s number density of these DM species.

8.4.1 Boltzmann equations and relic density

In order to determine the present day abundance of the DM species we need to solve a coupled set
of Boltzmann equations involving the number densities of the dark sector particles. These equations
can be written in a compact form as

dna

dt
+ 3H na = Ca (a = 1, 2, 3′) , (8.42)

with H being the Hubble parameter and Ca =
∑

bcd Cab→cd being the collision rate of all possible
2 → 2 processes for a given species that can change its number density. We can relate the collision
rate of a reaction with its inverse by making use of the detailed balance equation

Cab→cd = −〈σab→cdvr〉
(

nanb − ncnd
n̄an̄b

n̄cn̄d

)

= +〈σcd→abvr〉
(

ncnd − nanb
n̄cn̄d

n̄an̄b

)

, (8.43)

where n̄ ≡ neq is the equilibrium number density and 〈σab→cdvr〉 is the thermally averaged cross
section times the relative velocity of the DM particles. It is given by the general formula [324–326]

〈σab→cdvr〉 =
1

2m2
am2

bTK2(ma/T)K2(mb/T)

∫

∞

(ma+mb)2
dsK1(

√
s/T)pin(s)w(s), (8.44)

where w(s) = EaEbσab→cdvr. The cross section for a given process a + b → c + d is

σab→cdvr =
1

1 + δcd

pout(s)
32πspin(s)

∫

d cos θ |Mab→cd|2 , (8.45)

with |M|2 denoting the spin summed and polarization averaged matrix element squared. In Eq.
(8.44), Kν(z) stands for the modified Bessel functions. The general expressions for the kinematical
variables contained in (8.44) and (8.45) are provided in Appendix ??.

We may now proceed to obtain the relic abundance of the DM candidates by solving numer-
ically the set of Boltzmann equations. In order to write down the system of coupled equations,
we need to identify the reactions which modify the number of X1

µ, X2
µ, and X3′

µ particles. Since
MX1 = MX2 > MX3′ , the number densities satisfy n1 = n2 6= n3. It should also be clear that
〈σvr〉11→χχ′ = 〈σvr〉22→χχ′ 6= 〈σvr〉33→χχ′ , 〈σvr〉12→3χ = 〈σvr〉21→3χ 6= 〈σvr〉13→2χ = 〈σvr〉31→2χ =
〈σvr〉23→1χ = 〈σvr〉32→1χ, and 〈σvr〉11→33 = 〈σvr〉22→33 6= 〈σvr〉33→11 = 〈σvr〉33→22, where, for ex-
ample, 〈σvr〉12→3χ is short for 〈σvr〉X1X2→X3′χ, etc., and χχ′ denotes SM SM and hihj pairs when these
are kinematically allowed.

The processes which modify the number of X1,2
µ particles are

X1,2X1,2 → χχ′, X1,2X2,1 → X3′,8′hi, X1,2X3′ → X2,1hi, X1,2X1,2 → X3′X3′ , (8.46)
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whereas the ones which modify the number of X3′ particles are

X3′X3′ → χχ′, X1,2X3′ → X2,1hi, X3′hi → X1,2X2,1, X3′X3′ → X1,2X1,2 . (8.47)

The collision operators for the processes which modify the number of X1
µ and X2

µ particles are

C11→χχ′ =− 〈σvr〉11→χχ′
[

n2
1 − n2

1
]

= C22→χχ′ ,

C12→3hi
=− 〈σvr〉12→3hi

[

n1n2 − n1n2
n3

n3

]

= C21→3hi
,

C12→8hi
=− 〈σvr〉12→8hi

[n1n2 − n1n2] = C21→8hi
,

C13→2hi
=− 〈σvr〉13→2hi

[

n1n3 − n1n3
n2

n2

]

= C23→1hi
,

C11→33 =− 〈σvr〉11→33

[

n2
1 − n2

3
n2

1

n2
3

]

= C22→33 ,

C1hi→23 =+ 〈σvr〉23→1hi

[

n2n3 − n2n3
n1

n1

]

= C2hi→13 ,

(8.48)

whereas the ones which modify the number of X3′
µ particles are

C33→χχ′ =− 〈σvr〉33→χχ′
[

n2
3 − n2

3
]

,

C13→2hi
=− 〈σvr〉13→2hi

[

n1n3 − n1n3
n2

n2

]

= C23→1hi
,

C33→11 =+ 〈σvr〉11→33

[

n2
1 − n2

3
n2

1

n2
3

]

= C33→22 ,

C3hi→12 =+ 〈σvr〉12→3hi

[

n1n2 − n1n2
n3

n3

]

.

(8.49)

As discussed above, in the case v1 ≃ v2, the particles X4,5
µ are thermally available to X1,2

µ and
may coannihilate with them. We therefore also have to include them in our analysis. The collision
operators for the processes which change the number of X4,5

µ particles are4

C44→χχ′ =− 〈σvr〉44→χχ′
[

n2
4 − n2

4
]

= C55→χχ′ ,

C14→7hi
=− 〈σvr〉14→7hi

[n1n4 − n1n4] = C15→6hi
= C24→6hi

= C25→7hi
,

C44→11 =− 〈σvr〉44→11

[

n2
4 − n2

1
n2

4

n2
1

]

= C44→22 = C55→11 = C55→22 ,

C44→33 =− 〈σvr〉44→33

[

n2
4 − n2

3
n2

4

n2
3

]

= C55→33 .

(8.50)

Next, let us define

Ya ≡
na

s
, x ≡ MX3′

T
, Zab→cd(x) ≡ s(x = 1)

H(x = 1)
〈σvr〉ab→cd , (8.51)

where H =
√

4π3g⋆
45

T2

MPl
, g⋆ ≃ g⋆s is the number of effective relativistic degrees of freedom, and

s = 2π2g⋆s
45 T3 is the entropy density. Then, we may finally write down the coupled set of Boltzmann

4Of course, these reactions also change the number of X1,2,3′
µ particles. Also, we have assumed that the heavier dark

gauge bosons X6,7,8′
µ have already decayed to the lighter ones.
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equations in dimensionless variables as

dY1

dx
= − 1

x2

{

Z11→χχ′
[

Y2
1 − Y

2
1

]

+Z12→3hi

[

Y1Y2 − Y1Y2
Y3

Y3

]

+ Z12→8hi

[

Y1Y2 − Y1Y2
]

+Z13→2hi

[

Y1Y3 − Y1Y3
Y2

Y2

]

− Z23→1hi

[

Y2Y3 − Y2Y3
Y1

Y1

]

+Z11→33

[

Y2
1 − Y2

3
Y

2
1

Y
2
3

]

− Z44→11

[

Y2
4 − Y2

1
Y

2
4

Y
2
1

]

−Z55→11

[

Y2
5 − Y2

1
Y

2
5

Y
2
1
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[
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(8.52)

dY2

dx
=

dY1

dx
(1 ↔ 2, 4 ↔ 5, 7 ↔ 6) , (8.53)
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(8.54)

dY4
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[
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+ Z14→7hi

[

Y1Y4 − Y1Y4
]

+Z24→6hi

[

Y2Y4 − Y2Y4
]}

,

(8.55)

dY5

dx
=

dY4

dx
(4 ↔ 5, 1 ↔ 2, 7 ↔ 6). (8.56)

The equilibrium yields Ya ≡ na
s are given by

Y3 =
ĝX

g⋆s

45
4π4 x2K2(x) , (8.57)

Y1,2 =
ĝX

g⋆s

45
4π4 r2

1,2x2K2(r1,2x) , (8.58)

Y4,5 =
ĝX

g⋆s

45
4π4 r2

4,5x2K2(r4,5x) , (8.59)

where we have defined r1,2 ≡ MX1,2

M
X3′

, r4,5 ≡ MX4,5

M
X3′

and ĝX = 3 are the spin degrees of freedom of

the dark gauge bosons. We have numerically solved this system using Mathematica and we have
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also employed the packages FeynArts/FormCalc [645, 646] in order to produce analytic results
for the various cross sections involved. Finally, we have obtained the total relic density of the X1,2,3′

µ

particles
ΩXh2 = ΩX1 h2 + ΩX2 h2 + ΩX3′ h2 , (8.60)

where

ΩXa h2 =
MXa s0Ya(∞)

ρc/h2 , (8.61)

with s0 = 2890 cm−3 and ρc/h2 = 1.05 × 10−5 GeV/cm3. Equation (8.60) has to be compared with
the measured DM relic density ΩDMh2 = 0.1197 ± 0.0022 [1]. Next, we further explore the cases
v2

1 ≫ v2
2 and v1 ≃ v2.

Case v2
1 ≫ v2

2

In this case, as stated above, the masses of the DM candidates X1, X2, and X3′ are nearly degenerate,
while the masses of X4 and X5 are well above those of X1 and X2. Therefore, coannihilation effects
play no significant role in the final relic density of X1,2,3′ . However, even though the mass splitting
between MX1 = MX2 and MX3′ is small, the DM conversion processes X1,2X1,2 → X3′X3′ can lower
the number density of X1 and X2 and enhance that of X3′ , rendering X3′ the predominant DM
component.

To get a feeling of the effect of DM conversion, we set the parameters of the model according to
BP1 of Table 8.3 and solve numerically the Boltzmann equations (8.52)–(8.54) (omitting the coanni-
hilation terms), thus obtaining the solutions for the yields Y1,2 and Y3 with respect to x = MX3′ /T.

In Fig. 8.2 we plot these solutions with the DM conversion processes switched on (left) and
switched off (right). When the DM conversion is switched off, the final yields are closer together,
with the separation attributed to the slightly different masses between X1,2 and X3′ , as well as to the
mixing between X3′ − X8′ which results in more Feynman diagrams contributing to the annihilation
processes X3′X3′ → hihj and the semiannihilation processes X1,2X2,1 → X3′hi.5 On the other hand,
the separation of the final yields is larger when the DM conversion processes are switched on, since
more X1 and X2 particles have annihilated and have been converted to X3′ ; a reaction that continues
to occur to some extent even after freeze-out. In the case without DM conversion, the particles X1,
X2, and X3′ comprise 19%, 19%, and 62% of the total relic density respectively, while in the case
with DM conversion they comprise 13%, 13%, and 74% of the total relic density, respectively.

In Fig. 8.3 we fix again the model parameters as in BP1, but this time we leave the extra gauge
coupling gX free and scan over it, ergo obtaining the total relic density ΩXh2 of the DM candidates.
We first observe a resonant dip around 110 GeV which corresponds to MX3′ ≃ MX1,2 = Mh3 /2.
Then the relic density grows until ∼ 175 GeV where the tt̄ channel opens up. After that, there is a
steep decrease around Mh3 ≃ 215 GeV where all the annihilation channels XaXa → h3h3 and the
semiannihilation channels XaXb → Xch3 become kinematically available. This point crosses the
observed DM relic density (blue band in Fig. 8.3) and corresponds to gX = 0.78 (which also satisfies
the constraints discussed in Sec. 8.3).

5In the non-CSI version of this model considered in Ref. [401], the authors performed their SU(3) DM analysis under
the simplified assumption that the rest of the dark sector particles do not contribute to DM annihilation. They also only
included the couplings of the DM candidates to the two lightest scalar bosons h1, h2 and not the heavier H in their
notation. Here, we include all possible couplings and Feynman diagrams relevant to the relic densities of X1,2,3′ .
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Figure 8.2: The yields Y1,2 and Y3 in terms of x = MX3′ /T for BP1. The right plot has been obtained

neglecting the DM conversion terms in the Boltzmann equations. These terms are included in the left

plot. The DM conversion process reduces the final number density of the X1 and X2 particles since

some of them are converted to X3′ .
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Figure 8.3: The total relic density of X1,2 and X3′ as a function of the dark gauge coupling gX for

BP1. The blue band corresponds to the observed DM relic density within 3σ.
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Figure 8.4: The yields Y1,2, Y3, and Y4,5 in terms of x = MX3′ /T for BP2. The right plot has been

obtained neglecting the coannihilation terms in the Boltzmann equations. These terms are included

in the left plot. The difference is very small since most X1,2 and X4,5 particles are converted to X3′ .

Above Mh3 , one may expect that the relic density would decrease monotonically. This can be
understood as follows: every vertex containing three dark gauge boson legs is proportional to gX

while every vertex containing two dark gauge bosons and one or two scalar bosons is proportional
to g2

X. Therefore, 〈σvr〉 ∝ g2
X, or ΩXh2 ∝ 1/g2

X. This indicates that the relic density should decrease
as we increase gX (and therefore MX1,2,3′ ). Nevertheless, the mass of the pNGB Mh2 depends on all
the masses of the model [cf. (8.33)]. This means that as gX grows, so do the dark gauge boson masses
and consequently Mh2 . This effect tends to counterbalance the expected decrease of ΩXh2. On the
other hand, as gX becomes smaller, the relic density of the DM candidates increases considerably
and tends to overclose the Universe. For example, the small value of gX from BP5 in Table 8.3 leads
to ΩXh2 ≃ 6.2, in which case X1,2 are also completely depleted and X3′ makes up 100% of the relic
density. Furthermore, the dependence of Mh2 on gX means that there can be only two resonant dips,
corresponding to Mh1 /2 and Mh3 /2. This is in contrast to the non-CSI version of the model [401]
where there should be three resonant dips, corresponding to Mh1 /2, Mh2 /2, Mh3 /2, since in that
case Mh2 does not depend on gX. As a result, the CSI version of the model that we consider is in
general more constrained.

Case v1 ≃ v2

In this case, X3′ is nearly 20% lighter than X1 and X2 [cf. (8.41)] while X4 and X5 are almost degen-
erate with the latter ones. Therefore, coannihilations between X1,2 and X4,5 may occur around the
time of freeze-out and influence the relic density of these four particles. Since the semiannihilations
X1,2X3′ → X2,1hi are now phase-space suppressed, the Boltzmann equations governing the number
densities of X1,2 and X4,5 are almost identical. We therefore expect their relic number densities to
be very close. This is indeed the case as can be seen in Fig. 8.4.

There, we also distinguish between the cases when coannihilations are switched on (left) and
switched off (right). The effect is clearly insignificant, and in both cases the DM candidates X1, X2,
and X3′ comprise approximately 1%, 1%, and 98% of the total relic density, respectively. The dom-
inant phenomenon is DM conversion since most X1,2 and X4,5 have had enough time to annihilate
to X3′ .

We display the importance of this effect in Fig. 8.5, where coannihilations are switched on, but
this time we distinguish between the cases when DM conversion is switched on (left) and off (right).
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Figure 8.5: The yields Y1,2, Y3, and Y4,5 in terms of x = MX3′ /T for BP2. The right plot has been

obtained neglecting the DM conversion terms in the Boltzmann equations. These terms are included

in the left plot. The DM conversion processes are significant since many X1,2 particles are converted

to X3′ .

With DM conversion switched on, the DM candidates X1, X2, and X3′ comprise again 1%, 1%, and
98% of the total relic density. With DM conversion switched off, X1, X2, and X3′ comprise around
7%, 7%, and 86% of the total relic density, respectively. Moreover, the total relic density is almost
2 times larger in the former case (DM conversion on) than in the latter case (DM conversion off).
This can be attributed to the fact that without DM conversion freeze-out is delayed and more DM
particles have time to annihilate to SM particles.

8.4.2 Direct detection

Maybe the best prospect for validating the WIMP DM paradigm is through the direct detection of
DM particles at deep underground facilities. Many experiments are in progress, and hopefully we
may soon get a glimpse of this dark world.

Interactions between the DM particles X1,2,3′
µ and the nucleons N can be mediated through a t-

channel exchange of the scalar bosons hi. For the individual DM components, the corresponding
spin-independent elastic scattering cross sections are

σSI
1,2 =

f 2
N

16πv2
h

m4
N

(MX1,2 + mN)
2

∣

∣

∣

∣

∣

g2
Xv2

3
∑

i=1

Ri3R1i

M2
hi

∣

∣

∣

∣

∣

2

, (8.62)

σSI
3 =

f 2
N

16πv2
h

m4
N

(

MX3′ + mN
)2

∣

∣

∣

∣

∣

4
3

g2
Xv1 sin2 δ

3
∑

i=1

Ri2R1i

M2
hi

+
1
3

g2
Xv2

(

cos 2δ + 2 −
√

3 sin 2δ
)

3
∑

i=1

Ri3R1i

M2
hi

∣

∣

∣

∣

∣

2

,

(8.63)

where fN ≃ 0.3 [365,625–627,647–649] is the nucleon form factor and mN = 0.939 GeV is the average
nucleon mass.

Since we have three DM candidates with different masses (MX1 = MX2 > MX3′ ), not all of them
contribute equally to the local DM density which in direct detection experiments is assumed to be
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composed of a single DM species. Nevertheless, we may assume that the contribution of each DM
species to the local density is equal to the contribution of that particular species to the relic density
and consequently construct the effective cross sections [639, 650, 651]

σeff
a = σSI

a

(

ΩXa h2

ΩXh2

)

. (8.64)

For example, BP3 in Table 8.3 reproduces the observed DM relic density within 3σ, with X1,
X2, and X3′ comprising approximately 5%, 5%, and 90% of its total. The resulting effective cross
sections are then

σeff
1,2 = 1.46715 × 10−47 cm2,

σeff
3 = 2.77662 × 10−46 cm2.

Both of these numbers are well below the limits set by the LUX experiment [628], but are neverthe-
less within the reach of future experiments such as LZ [652] and XENON1T [653].
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Chapter 9

Frame-dependence of higher-order
inflationary observables in scalar-tensor
theories

9.1 Introduction

The work presented in this chapter was done in collaboration with PhD student Thomas Pappas
and Prof. Kyriakos Tamvakis and has been published in Physical Review D [654].

In this chapter, we compute the spectral indices up to third order in the slow-roll approximation
in a general scalar-tensor theory in both the Einstein and Jordan frames, using quantities which
are invariant under the conformal rescaling of the metric and transform as scalar functions under
the reparametrization of the scalar field. The calculation is carried out by employing the Green’s
function method. We show that the frames are equivalent up to this order due to the underlying
assumptions. Nevertheless, care must be taken when defining the number of e-folds.

In Section 9.2, we review the invariant formalism introduced in [205]. After presenting the three
principal quantities which are invariant under a conformal transformation of the metric and a redef-
inition of the scalar field, we consider the slow-roll approximation in the two frames and define the
corresponding Hubble slow-roll parameters (HSRPs). We also define a hierarchy of potential slow-roll
parameters (PSRPs) which are frame independent. As shown in [655], this formalism proves to be
attractive since many inflationary models can be classified according to the form of their invariant
potentials. This provides an elegant explanation as to why vastly different models can produce the
same predictions for the inflationary observables.

In Section 9.3, we adopt the Green’s function method considered in [55] and calculate the spectral
indices up to third order in the slow-roll parameters in both the JF and EF. Then, using the relations
between the HSRPs we find that the two frames are equivalent. Furthermore, since the HSRPs can
be related to the PSRPs, we express the spectral indices in terms of the PSRPs which are manifestly
frame invariant.

In Section 9.4, we consider the nonminimal Coleman-Weinberg model developed in [148] and
compare the predictions of the third order corrected expressions we obtained with the most com-
monly used first order results. Furthermore, even though the expressions for the observables that
we obtain are frame invariant, the definition of the number of e-folds is not and this results to
different predictions. To this end, we examine how the predictions change if the required 50–60
number of e-folds is taken in the Einstein or in the Jordan frame. Finally, we examine how the
predicted values for the inflationary observables are affected by the end-of-inflation condition. The
exact condition for inflation to end is when ǫH = 1. The usual approach is to Taylor approximate



126 Chapter 9. Frame-dependence of higher-order inflationary observables in ST theories

this condition with PSRPs. Most authors use only the first order approximation ǫH ≈ ǫV since this
is indeed a good approximation for almost all of the inflationary epoch save for the last few e-folds
before inflation ends when this approximation breaks down. Since we have obtained the third-
order corrected expressions for the inflationary observables we also compare the results against
three more end-of-inflation conditions, namely, the third-order Taylor approximation of the condi-
tion ǫH = 1 with PSRPs, as well as against the Padé [1/1] and Padé [2/2] approximants [656]. All
of these considerations prove to be relevant since the differences in the predictions that we obtain
are within the accuracy of future experiments and may prove instrumental in ruling out various
inflationary models.

9.2 Invariant formalism and slow-roll approximation

In this section, we consider the general action of a single scalar field that describes a wide class of
scalar-tensor gravity theories. By using the frame and parametrization invariant formalism intro-
duced in [203–206, 655] we write down the field equations of motion in terms of quantities that are
invariant under conformal rescalings of the metric and redefinitions of the scalar field.

9.2.1 Invariants

Next, we follow [205] and consider three quantities which are invariant under a conformal rescaling
of the metric and a reparametrization of the scalar field as a result of the transformation properties
(3.104)-(3.107) of the model functions. These invariants are

Im(Φ) ≡ e2σ(Φ)

A(Φ)
, (9.1)

IV (Φ) ≡ V(Φ)

(A(Φ))2 , (9.2)

Iφ(Φ) ≡
∫ (

2AB + 3(A′)2

4A2

)1/2

dΦ. (9.3)

The first invariant, Im(Φ), is a quantity that characterizes the nonminimality of a theory. For con-
stant Im(Φ) the scalar field is minimally coupled to gravity, and we are dealing with standard
general relativity. On the other hand, if I ′

m(Φ) 6≡ 0, then this invariant is a dynamical function and
the scalar field is nonminimally coupled to gravity, as is the case in the JF. The second invariant,
IV (Φ), contains the self-interactions of the scalar field and plays the role of an invariant potential.
Finally, the third invariant, Iφ(Φ), measures the volume of the one-dimensional space of the scalar
field and can be interpreted as the invariant propagating scalar degree of freedom.

The transformation properties of the model functions can also be used to define tensorial invari-
ants, for example [205]

ĝµν ≡ A(Φ)gµν. (9.4)

The above choice is not unique since the tensor (9.4) does not change its transformation properties
if it is multiplied by a scalar invariant, i.e.,

ḡµν ≡ e2σ(Φ)gµν = Im ĝµν (9.5)

is also invariant under the transformations (3.102) and (3.103).
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In the following, a barred or a hatted variable will represent the quantity evaluated in the JF or
EF, respectively. The relation between the time coordinate, the scale factor and the Hubble parame-
ter in the two frames is [205]

d
dt̄

=
1√Im

d
dt̂

, ā(t̄) =
√

Im â(t̂), (9.6)

H̄ =
1√Im

(

Ĥ +
1
2

d ln Im

dt̂

)

. (9.7)

An interesting and appealing feature of the invariant formalism, which was pointed out in [655],
is that inflationary models with very different background physical motivations can be described by
similar invariant potentials and thus lead to the same predictions for the inflationary observables.
As an example, let us consider induced gravity inflation [657–663] and Starobinsky inflation [87–92,
664]. The former is described by the model functions

A(Φ) = ξΦ
2, (9.8)

B(Φ) = 1, (9.9)

σ(Φ) = 0, (9.10)

V(Φ) = λ
(

Φ
2 − v2)2

, (9.11)

where ξ is the nonminimal coupling and v is the vacuum expectation value (VEV) of the scalar field
Φ which induces the Planck mass scale,

1 = ξv2. (9.12)

For Starobinsky inflation with f (R) = R + bR2 one has [216]

A(Φ) = Φ, (9.13)

B(Φ) = 0, (9.14)

σ(Φ) = 0, (9.15)

V(Φ) =
b
2

(

Φ − 1
2b

)2

. (9.16)

Next, following the recipe of [655] we can obtain the invariant potentials IV for the two models. As
a first step, using (9.3) we calculate the form of the invariant fields

Induced gravity: Iφ =

√

1 + 6ξ

2ξ
ln
(

Φ

vΦ

)

, (9.17)

Starobinsky: Iφ =

√
3

2
ln Φ. (9.18)

Afterwards, inverting the above relations we find Φ(Iφ) and then using (9.2) we calculate
IV (Φ(Iφ)) = IV (Iφ) and obtain

Induced gravity: IV (Iφ) =
λ

ξ2

(

1 − e−
√

8ξ
1+6ξ Iφ

)2

, (9.19)

Starobinsky: IV (Iφ) =
1

8 b

(

1 − e−
2√
3
Iφ
)2

. (9.20)

The forms of the invariant potentials suggest that for large values of the nonminimal coupling
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Figure 9.1: The normalized invariant inflationary potentials for induced gravity and Starobinsky mod-

els for ξ = 2. In the strong coupling limit the invariant potentials have a similar form and lead to the

same predictions, while in the limit (9.21) induced gravity approaches the quadratic inflation attractor

(inset in left plot).

(ξ & 1) the shape of the induced gravity invariant potential (9.19) coincides with its Starobinsky
counterpart (9.20), a behavior depicted in Fig. 9.1. As a consequence, the two models yield identical
predictions in the strong coupling regime. On the other hand, in the weak coupling limit induced
gravity gives the same predictions with quadratic inflation [31]. Indeed, when

Iφ ≪
√

1 + 6ξ

8ξ
, (9.21)

the invariant potential for induced gravity becomes [116, 665]

IV = M2I2
φ, with M2 =

8λ

ξ (1 + 6ξ)
. (9.22)

Note in (9.21) that as ξ becomes smaller the allowed range for the field Iφ in which induced gravity
and quadratic inflation produce similar predictions becomes wider. As a consequence, only for
small values of ξ the field Iφ can produce the required 50-60 number of e-folds. This is why the
induced gravity predictions reach the quadratic inflation attractor in the small coupling regime.

9.2.2 Slow-roll in the Jordan frame

Let us consider the slow rolling of the inflaton field in the JF. Taking the functional derivative of
the action (3.101) with respect to the metric and the scalar field in the JF, we can write down the
equations of motion in terms of the invariants as

H̄2 =
1
3

(

dIφ

dt̄

)2

+ H̄
d ln Im

dt̄
− 1

4

(

d ln Im

dt̄

)2

+
1
3
IV
Im

, (9.23)

dH̄
dt̄

= −1
2

H̄
d ln Im

dt̄
+

1
4

(

d ln Im

dt̄

)2

−
(

dIφ

dt̄

)2

+
1
2

d2 ln Im

dt̄2 , (9.24)

d2Iφ

dt̄2 =

(

−3H̄ +
d ln Im

dt̄

)

dIφ

dt̄
− 1

2Im

dIV
dIφ

, (9.25)
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where we have neglected the contributions of the matter part of the action since we assume that the
energy density and pressure of the scalar field dominate during the inflationary epoch.

The standard HSRPs in the JF have the form [205]

ǭ0 ≡ − 1
H̄2

dH̄
dt̄

= −d ln H̄
d ln ā

, η̄ ≡ −
(

H̄
dIφ

dt̄

)−1 d2Iφ

dt̄2 . (9.26)

Inflation in the JF occurs as long as ǭ0 < 1, and slow rollover happens while ǭ0 ≪ 1. In the next
section, we will be concerned with higher order corrections to the inflationary indices. As a result,
we will need a series of slow-roll parameters which, following [205], we take to be

κ̄0 ≡ 1
H̄2

(

dIφ

dt̄

)2

=

(

dIφ

d ln ā

)2

, (9.27)

κ̄1 ≡ 1
H̄κ̄0

dκ̄0

dt̄
=

d ln κ̄0

d ln ā
= 2 (−η̄ + ǭ0) , (9.28)

κ̄i+1 ≡ 1
H̄κ̄i

dκ̄i

dt̄
=

d ln κ̄i

d ln ā
. (9.29)

In the JF, it is also useful to consider a second series of slow-roll parameters involving the invariant
Im and thus related to the nonminimal coupling. This series has the form [205]

λ̄0 ≡ 1
2H̄

d ln Im

dt̄
=

1
2

d ln Im

d ln ā
, (9.30)

λ̄1 ≡ 1
H̄λ̄0

dλ̄0

dt̄
=

d ln λ̄0

d ln ā
, (9.31)

λ̄i+1 ≡ 1
H̄λ̄i

dλ̄i

dt̄
=

d ln λ̄i

d ln ā
. (9.32)

Now, using the definitions of the slow-roll parameters (9.26)-(9.32) we can rewrite the system of the
field equations (9.23)-(9.25) as

IV = H̄2Im
(

3 − κ̄0 − 6λ̄0 + 3λ̄2
0
)

, (9.33)

κ̄0 = ǭ0 − λ̄0
(

1 + ǭ0 − λ̄0 − λ̄1
)

, (9.34)

− 1
2Im

dIV
dIφ

= H̄
dIφ

dt̄

(

3 − ǭ0 +
1
2

κ̄1 − 2λ̄0

)

. (9.35)

In the slow-roll regime we must have [205]

|κ̄0| ≪ 1, |κ̄1| ≪ 1, |λ̄0| ≪ 1, |λ̄1| ≪ 1, (9.36)

and then the slow-rolling inflaton obeys the following approximate equations:

IV ≈ 3H̄2Im, 3H̄
dIφ

dt̄
≈ − 1

2Im

dIV
dIφ

. (9.37)
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9.2.3 Slow-roll in the Einstein frame

Analogously to the JF, the field equations in terms of the invariants in the EF have the form [205]

Ĥ2 =
1
3

[

(

dIφ

dt̂

)2

+ IV
]

, (9.38)

dĤ
dt̂

= −
(

dIφ

dt̂

)2

, (9.39)

d2Iφ

dt̂2
= −3Ĥ

dIφ

dt̂
− 1

2
dIV
dIφ

. (9.40)

The standard slow-roll parameters now are

ǫ̂0 ≡ − 1
Ĥ2

dĤ
dt̂

= −d ln Ĥ
d ln â

, η̂ ≡ −
(

Ĥ
dIφ

dt̂

)−1 d2Iφ

dt̂2
, (9.41)

and again it will be useful to consider the following series of slow-roll parameters:

κ̂0 ≡ 1
Ĥ2

(

dIφ

dt̂

)2

=

(

dIφ

d ln â

)2

, (9.42)

κ̂1 ≡ 1
Ĥκ̂0

dκ̂0

dt̂
=

d ln κ̂0

d ln â
= 2 (−η̂ + ǫ̂0) , (9.43)

κ̂i+1 ≡ 1
Ĥκ̂i

dκ̂i

dt̂
=

d ln κ̂i

d ln â
. (9.44)

With the above definitions, the system (9.38)-(9.40) can be rewritten as

IV = Ĥ2 (3 − κ̂0) , (9.45)

κ̂0 = ǫ̂0, (9.46)

−1
2

dIV
dIφ

= Ĥ
dIφ

dt̂

(

3 − ǫ̂0 +
1
2

κ̂1

)

. (9.47)

The slow-roll conditions are now simply

|κ̂0| ≪ 1, |κ̂1| ≪ 1, (9.48)

and the approximate forms of the equations (9.45), (9.47) become

IV ≈ 3Ĥ2, 3Ĥ
dIφ

dt̂
≈ −1

2
dIV
dIφ

. (9.49)

In the next section, we will calculate the inflationary indices up to third order in the slow-roll
parameters in both the EF and JF and then compare the results. It will prove useful to relate the EF
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slow-roll parameters with the JF ones. This can be done using Eqs. (9.6), (9.7). We have

κ̂0 =
κ̄0

(1 − λ̄0)2 , κ̂1 =
κ̄1

1 − λ̄0
+

2λ̄0λ̄1

(1 − λ̄0)2 , (9.50)

ǫ̂0 =
ǭ0 − λ̄0

1 − λ̄0
+

λ̄0λ̄1

(1 − λ̄0)2 . (9.51)

9.2.4 Invariant potential slow-roll parameters

In the spirit of [32], we also define a hierarchy of slow-roll parameters in terms of the invariant
inflaton potential. The standard potential slow-roll parameter ǫV assumes the form [205]

ǫV =
1

4I2
V

(

dIV
dIφ

)2

, (9.52)

while ηV and higher-order parameters can be encoded in

nβV ≡
(

1
2IV

)n (dIV
dIφ

)n−1




d(n+1)IV
dI (n+1)

φ



 , (9.53)

where nβV is a parameter of order n in the slow-roll approximation. The first three parameters
arising from this hierarchy are

ηV =
1

2IV

(

d2IV
dI2

φ

)

, (9.54)

ζ2
V =

1
4I2

V

(

dIV
dIφ

)

(

d3IV
dI3

φ

)

, (9.55)

ρ3
V =

1
8I3

V

(

d2IV
dI2

φ

)(

d4IV
dI4

φ

)

. (9.56)

Note that we have changed the symbols ξ and σ of [32] in order to avoid confusion with the non-
minimal coupling and one of the model functions, respectively.

9.3 Higher-order spectral indices

In this section, we compute the tensor and scalar power spectra up to second-order corrections in
the slow-roll approximation and the corresponding spectral indices in both the JF and EF using the
invariant slow-roll parameters of Secs 9.2.2 and 9.2.3. We present the detailed calculation in the JF,
and only give the final results for the EF since the calculation follows along the same lines with JF.

9.3.1 Jordan frame analysis

The evolution of linear (tensor and scalar) curvature cosmological perturbations in a flat FLRW
background and in the presence of a scalar inflaton field is governed by the Mukhanov-Sasaki equation
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(MSE) [46, 47] which reads [209, 210, 212–215]

d2ν

dτ2 +

(

k2 − 1
z

d2z
dτ2

)

ν = 0, (9.57)

where k corresponds to the scale of the Fourier mode k of the gauge-invariant comoving curvature
perturbation Rk [45]. Furthermore, the field ν (usually referred to as the Mukhanov field) is related
to Rk via ν ≡ zRk, where z is a parametrization-independent quantity that depends on both the
background and the type of perturbations [205]. For tensor perturbations,

z =
ā√Im

= â, (9.58)

while for scalar perturbations

z =

√

2
Im

ā
H̄
(

1 − λ̄0
)

dIφ

dt̄
=

√
2

â

Ĥ

dIφ

dt̂
. (9.59)

Therefore, the evolution equation (9.57) is parametrization-independent and also has the same func-
tional form for tensor and scalar perturbations. The two asymptotic solutions for the scalar field ν
corresponding to the subhorizon and the superhorizon limit can be written respectively as

ν →
{

1√
2k

e−ikτ as − kτ → ∞,
Akz as − kτ → 0.

(9.60)

The power spectrum for cosmological perturbations is usually defined by the two-point correlation
function for Rk in the following way:

〈Rk,Rk′〉 = (2π)2δ3(k − k′)PR(k), (9.61)

where all quantities are calculated at the time when the mode k crosses the horizon [when k−1

equals the Hubble radius (aH)−1]. Note that the horizon-crossing condition is not the same in the
two frames. In the EF one has the condition k = âĤ while in the JF using (9.6),(9.7) and (9.30) one
should use k = āH̄(1 − λ̄0) to evaluate quantities at the time of horizon crossing. Now, using the
relation between Rk and the Mukhanov field and the asymptotic superhorizon limit (9.60) we can
rewrite the power spectrum as

P(k) =
(

k3

2π2

)

lim
−kτ→0

∣

∣

∣

ν

z

∣

∣

∣

2
=

k3

2π2 |Ak|2. (9.62)

This way the calculation of the spectrum reduces to simply finding the form of the amplitude of
the field ν in the superhorizon limit. The MSE is usually solved in terms of Hankel functions by
treating the slow-roll parameters as constant during inflation [53]. Since we want to obtain higher-
order results for the power spectra and the spectral indices we cannot adhere to this assumption.
Instead, we employ the Green’s function method introduced by Stewart and Gong [55] which is
valid to any order.

Now, in order to compute Ak one has to solve the MSE (9.57) which is a second-order differen-
tial equation. Thus in order to uniquely specify the solution for the field ν the use of two boundary
conditions is necessary. To this end, one can use the asymptotic solutions (9.60) as boundary condi-
tions. By introducing the dimensionless variable x ≡ −kτ and redefining the field as y ≡

√
2kν, the
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asymptotic solutions become

y →
{

e−ix as x → ∞,√
2kAkz as x → 0.

. (9.63)

Also, by assuming the following ansatz for z:

z =
1
x

f (ln x), (9.64)

we can recast the MSE in the form

d2y
dx2 +

(

1 − 2
x2

)

y =
1
x2 g(ln x)y, (9.65)

where the function g is defined through

g(ln x) =
1

f (ln x)

[

−3
d f (ln x)

d ln x
+

d2 f (ln x)
d(ln x)2

]

. (9.66)

The homogeneous solution with the appropriate asymptotic behavior at x → ∞ is

y0(x) =
(

1 +
i
x

)

eix. (9.67)

By “appropriate behavior" we mean that (9.67) reduces to the usual Minkowski modes in the deep
subhorizon regime. Combining (9.65) and (9.63) we can rewrite the MSE as an integral equation

y(x) = y0(x) +
i
2

∫

∞

x
du

1
u2 g(ln u)y(u) [y∗0(u)y0(x)− y∗0(x)y0(u)] (9.68)

and seek a perturbative solution to (9.68). We start by Taylor-expanding xz around x = 1 in the
following way:

xz = f (ln x) =
∞
∑

n=0

fn

n!
(ln x)n, (9.69)

where the n–th order coefficient of the expansion is of the same order in slow-roll and is given by

fn =
dn(xz)

d(ln x)n . (9.70)

In terms of the slow-roll parameters

ǭn =
(−1)n+1

H̄
H̄(n+1)

H̄(n)
(9.71)

we can expand the conformal time up to second order corrections and thus have the following
approximation [49]:

x = −kτ = −k
∫

dt̄
ā

=
k

āH̄
(1 + ǭ0 + 3ǭ2

0 + ǭ0ǭ1). (9.72)

Then, using the relations

ǭ0 = λ̄0 +
κ̄0

(1 − λ̄0)
− λ̄0λ̄1

(1 − λ̄0)
, (9.73)
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ǭ2
0 ≈ λ̄2

0 +
κ̄2

0

(1 − λ̄0)2 + 2
λ̄0κ̄0

(1 − λ̄0)
, (9.74)

2ǭ2
0 + ǭ0ǭ1 ≈ λ̄0λ̄1 +

κ̄0κ̄1

(1 − λ̄0)
, (9.75)

we can express x in terms of the κ̄ and λ̄ slow-roll parameters,

x =
k

āH̄

(

1 + λ̄0 + κ̄0 + 3λ̄0κ̄0 + κ̄0κ̄1 + κ̄2
0 + λ̄2

0
)

. (9.76)

The second-order power spectrum is then given in terms of the coefficients f0, f1 and f2 as [55]

P(k) =
k2

(2π)2
1
f 2
0

[

1 − 2α
f1

f0
+

(

3α2 − 4 +
5π2

12

)(

f1

f0

)2

+

(

−α2 +
π2

12

)

f2

f0

]

, (9.77)

where α ≡ (2 − ln 2 − γ) ≃ 0.729637 and γ ≃ 0.577216 is the Euler–Mascheroni constant [54]. For
tensor perturbations in the JF we have that up to second order terms

f T
0 =

k

H̄
√Im

(

1 + λ̄0 + κ̄0 + 3λ̄0κ̄0 + κ̄0κ̄1 + 2κ̄2
0 + λ̄2

0
)

∣

∣

∣

∣

k=āH̄(1−λ̄0)

, (9.78)

f T
1 =

k

H̄
√Im

(

−κ̄0 − 3κ̄0λ̄0 − 2κ̄2
0 − κ̄0κ̄1

)

∣

∣

∣

∣

k=āH̄(1−λ̄0)

, (9.79)

f T
2 =

k

H̄
√Im

(

κ̄2
0 + κ̄0κ̄1

)

∣

∣

∣

∣

k=āH̄(1−λ̄0)

, (9.80)

where the slow-roll parameters are evaluated at the time of the horizon crossing. We have also
introduced the superscript “T" to discriminate from the corresponding coefficients of the scalar
perturbations which will be denoted by an “S".

Substitution of these coefficients into (9.77) results in the following expression for the second
order corrected tensor power spectrum in the slow-roll approximation:

P̄T =

[

H̄2Im

(2π)2

] [

1 − 2λ̄0 + (2α − 2)κ̄0 + λ̄2
0 +

(

2α2 − 2α − 5 +
π2

2

)

κ̄2
0

+

(

−α2 + 2α − 2 +
π2

12

)

κ̄0κ̄1

]

.
(9.81)

The tensor spectral index is defined as the logarithmic derivative of the power spectrum

n̄T ≡ d ln P̄T(k)
d ln k

(9.82)

and thus the third order JF tensor scalar spectral index is obtained to be

n̄T =− 2κ̄0 − 2κ̄2
0 − 4λ̄0κ̄0 + (2α − 2)κ̄0κ̄1 − 6λ̄2

0κ̄0 + (4α − 2)λ̄0λ̄1κ̄0 − 8λ̄0κ̄2
0

+ (6α − 6)λ̄0κ̄0κ̄1 − 2κ̄3
0 + (6α − 16 + π2)κ̄2

0κ̄1 +

(

−α2 + 2α − 2 +
π2

12

)

(κ̄0κ̄2
1 + κ̄0κ̄1κ̄2).

(9.83)
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For scalar perturbations in the JF the coefficients f S are slightly more complicated than their f T

counterparts and have the following second order forms:

f S
0 =

k
H̄2

√

2
Im

dIφ

dt̄

[

1 + 2λ̄0 + κ̄0 + 4λ̄0κ̄0 +
3
2

κ̄0κ̄1 + 2κ̄2
0 + 3λ̄2

0

]∣

∣

∣

∣

k=āH̄(1−λ̄0)

, (9.84)

f S
1 = − k

H̄2

√

2
Im

dIφ

dt̄

[

κ̄0 +
κ̄1

2
+ 2κ̄0κ̄1 + 4κ̄0λ̄0 +

3
2

λ̄0κ̄1 + λ̄0λ̄1 + 2κ̄2
0

]∣

∣

∣

∣

k=āH̄(1−λ̄0)

, (9.85)

f S
2 =

k
H̄2

√

2
Im

dIφ

dt̄

[

κ̄2
1

4
+ 2κ̄0κ̄1 + κ̄2

0 +
κ̄1κ̄2

2

]∣

∣

∣

∣

k=āH̄(1−λ̄0)

. (9.86)

Then the scalar power spectrum in the JF is

P̄S =

[

H̄4

(2π)2
Im

2

(

dIφ

dt̄

)−2
]

[

1 − 4λ̄0 + (2α − 2)κ̄0 + ακ̄1 +

(

2α2 − 2α − 5 +
π2

2

)

κ̄2
0

+ (4 − 4α)λ̄0κ̄0 + (−3α)λ̄0κ̄1 +

(

α2

2
− 1 +

π2

8

)

κ̄2
1 + 6λ̄2

0

+ 2ᾱλ̄0λ̄1 +

(

α2 + α − 7 +
7π2

12

)

κ̄0κ̄1 +

(

−α2

2
+

π2

24

)

κ̄1κ̄2

]

.

(9.87)

Substitution of the latter in the definition of the scalar spectral index

n̄S ≡ 1 +
d ln P̄S

d ln k
(9.88)

results in the following third order expression for the scalar index in the JF:

n̄S =1 − 2κ̄0 − κ̄1 − 2κ̄2
0 − 2λ̄0λ̄1 + ακ̄1κ̄2 − κ̄1λ̄0 − 4κ̄0λ̄0 + (2α − 3)κ̄1κ̄0 − 2κ̄3

0 − 8λ̄0κ̄2
0

− 6λ̄2
0κ̄0 + (6α − 17 + π2)κ̄2

0κ̄1 − κ̄1λ̄2
0 +

(

−2 +
π2

4

)

κ̄2
1κ̄2 − 4λ̄2

0λ̄1 + 2αλ̄0λ̄2
1

+

(

−α2

2
+

π2

24

)

κ̄1κ̄2
2 +

(

−α2 + 3α − 7 +
7π2

12

)

κ̄0κ̄2
1 + 2αλ̄0λ̄1λ̄2 + (6α − 9)λ̄0κ̄0κ̄1

+ (4α − 4)λ̄0λ̄1κ̄0 + (α + 1)κ̄1λ̄0λ̄1 + 2αλ̄0κ̄1κ̄2 +

(

−α2

2
+

π2

24

)

κ̄1κ̄2κ̄3

+

(

−α2 + 4α − 7 +
7π2

12

)

κ̄0κ̄1κ̄2.

(9.89)

Finally, with the higher order corrected expressions for the power spectra for scalar and tensor
perturbations in the JF at our disposal, it is trivial to compute the tensor-to-scalar ratio,

r̄ =16κ̄0

[

1 + 2λ̄0 − ακ̄1 + 3λ̄2
0 − 2αλ̄0λ̄1 − 3αλ̄0κ̄1 +

(

−α + 5 − π2

2

)

κ̄0κ̄1

+

(

α2

2
+ 1 − π2

8

)

κ̄2
1 +

(

α2

2
− π2

24

)

κ̄1κ̄2

]

.
(9.90)
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9.3.2 Einstein frame results

Repeating the same analysis in the EF, we obtain the tensor power spectrum

P̂T =
Ĥ2

(2π)2

[

1 + (2α − 2)κ̂0 +

(

2α2 − 2α − 5 +
π2

2

)

κ̂2
0 +

(

−α2 + 2α − 2 +
π2

12

)

κ̂0κ̂1

]

, (9.91)

the tensor spectral index

n̂T =− 2κ̂0 − 2κ̂2
0 + (2α − 2)κ̂0κ̂1 − 2κ̂3

0 + (6α − 16 + π2)κ̂2
0κ̂1

+

(

−α2 + 2α − 2 +
π2

12

)

(κ̂0κ̂2
1 + κ̂0κ̂1κ̂2),

(9.92)

the scalar power spectrum

P̂S =

[

Ĥ4

2(2π)2

(

dIφ

dt̂

)−2
]

[

1 + (2α − 2)κ̂0 + ακ̂1 +

(

2α2 − 2α − 5 +
π2

2

)

κ̂2
0

+

(

α2

2
− 1 +

π2

8

)

κ̂2
1 +

(

α2 + α − 7 +
7π2

12

)

κ̂0κ̂1

+

(

−α2

2
+

π2

24

)

κ̂1κ̂2

]

,

(9.93)

the scalar spectral index

n̂S =1 − 2κ̂0 − κ̂1 − 2κ̂2
0 + ακ̂1κ̂2 + (2α − 3)κ̂0κ̂1 − 2κ̂3

0 + (6α − 17 + π2)κ̂2
0κ̂1

+

(

−2 +
π2

4

)

κ̂2
1κ̂2 +

(

−α2

2
+

π2

24

)

κ̂1κ̂2
2 +

(

−α2 + 3α − 7 +
7π2

12

)

κ̂0κ̂2
1

+

(

−α2

2
+

π2

24

)

κ̂1κ̂2κ̂3 +

(

−α2 + 4α − 7 +
7π2

12

)

κ̂0κ̂1κ̂2,

(9.94)

and finally the tensor-to-scalar ratio

r̂ = 16κ̂0

[

1 − ακ̂1 +

(

−α + 5 − π2

2

)

κ̂0κ̂1 +

(

α2

2
+ 1 − π2

8

)

κ̂2
1 +

(

α2

2
− π2

24

)

κ̂1κ̂2

]

. (9.95)

Note that the above results have been obtained using the condition k = âĤ at the time of horizon
crossing.

9.3.3 Equivalence of the frames up to third order

It has been reported by the authors of [205] that the EF and JF spectral indices are equivalent up to
second order in the slow-roll expansion. In this work we have obtained the third-order corrected
expressions for the indices in the two frames. It is thus intriguing to see whether this equivalence
extends to the third-order expressions also. Expanding the EF slow-roll parameters (9.50) up to
third order in the JF slow-roll parameters we have

κ̂0 ≈ κ̄0 + 2κ̄0λ̄0 + 3κ̄0λ̄2
0, (9.96)

κ̂1 ≈ κ̄1 + κ̄1λ̄0 + κ̄1λ̄2
0 + 2λ̄0λ̄1 + 4λ̄2

0λ̄1, (9.97)
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κ̂1κ̂2 ≈ κ̄1κ̄2 + 2κ̄1κ̄2λ̄0 + κ̄1λ̄0λ̄1 + 2λ̄0λ̄2
1 + 2λ̄0λ̄1λ̄2, (9.98)

κ̂0κ̂1κ̂2 ≈ κ̄0κ̄1κ̄2 , κ̂1κ̂2κ̂3 ≈ κ̄1κ̄2κ̄3. (9.99)

Then, plugging (9.96) - (9.99) in the EF expressions for the indices (9.92) - (9.95) we find

n̂T = n̄T, (9.100)

n̂S = n̄S, (9.101)

r̂ = r̄. (9.102)

Therefore, the spectral indices calculated in the EF and JF coincide. Finally, since the Green’s func-
tion method is valid up to arbitrary order in the slow-roll expansion, we expect the equivalence
between the spectral indices in the JF and EF to also hold to all orders.

9.3.4 Invariant expressions for the inflationary observables

So far we have obtained the spectral indices and the tensor-to-scalar ratio in both the EF and JF.
We have also shown that up to third order in the slow-roll expansion the results in the two frames
are equivalent. We can take advantage of this equivalence and write down expressions for the
inflationary observables only in terms of the invariant potential and its derivatives. The equivalence
between the two frames allows then one to rewrite the EF results in terms of the invariant PSRPs
and expect these results to hold in the JF too. In order to express the spectral indices in terms of the
PSRPs defined in (9.52) - (9.56) we first use the following relations between the EF HSRPs (9.42) -
(9.44) and the ones defined in [32]:

κ̂0 = ǫH, (9.103)

κ̂1 = −2ηH + 2ǫH, (9.104)

κ̂1κ̂2 = 4ǫ2
H − 6ǫHηH + 2ζ2

H, (9.105)

κ̂1κ̂2
2 + κ̂1κ̂2κ̂3 = 16ǫ3

H − 22ǫ2
HηH + 12ǫHη2

H + 10ǫHζ2
H − 2ηHζ2

H − 2ρ3
H. (9.106)

Then, using the third-order Taylor expansions of the HSRPs in terms of the PSRPs [32], presented
in Appendix C, we obtain the inflationary indices up to third order in the PSRPs

nT =− 2ǫV +

(

8α − 22
3

)

ǫ2
V −

(

4α − 8
3

)

ǫVηV +
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9
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3

)
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V
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ǫVη2
V +
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3

)

ǫ2
VηV

+

(
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8
3

α − 28
9

+
π2

6

)

ǫVζ2
V ,

(9.107)
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nS =1 − 6ǫV + 2ηV +
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(9.108)

r =16ǫV

[
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(
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(9.109)

In a given model, once we derive the invariant potential IV in terms of the invariant Iφ, we can
readily obtain the PSRPs and express the inflationary observables in an invariant way in terms of
IV and its derivatives.

9.4 Number of e-folds

In this section, we consider the difference between the definitions for the number of e-folds in the
EF and JF and study how it affects the values of the observables. Furthermore, we discuss various
approaches for a more accurate determination of the value of the inflaton field at the end of inflation.

9.4.1 Einstein vs Jordan

The number of e-folds is usually defined in the EF as

dN̂ ≡ Ĥdt̂ = d ln â = − 1√
κ̂0

dIφ = − 1√
ǫ̂0

dIφ = − 1√
ǫH

dIφ. (9.110)

Using (9.6) the number of e-folds in the JF becomes

dN̄ = dN̂ +
1
2

d ln Im =

(

− 1√
ǫH

+
1
2

d ln Im

dIφ

)

dIφ. (9.111)

We see that the definitions for the number of e-folds in the two frames differ by the invariant factor
1
2 d ln Im which includes the nonminimal coupling in a given theory. Of course, when the scalar
field is minimally coupled to gravity the two definitions coincide. Therefore, in general, the same
number of e-folds in the two frames will translate to different values for the invariant Iφ. This means
that we will get different predictions for the observables depending on whether we use (9.110) or
(9.111). Typically the difference is small, but still comparable to (if not larger than) the difference for
the observables if one chooses to use the first, second or third order results for nS and r in terms of
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the slow-roll parameters. Furthermore, these types of differences can play a significant role in the
future, with the advent of more precise measurements [52, 666], in regards to the characterization
of an inflationary model as viable or not.

In order to quantify the aforementioned effects, we will next consider the nonminimal Coleman-
Weinberg model introduced in [148]. The model functions are

A(Φ) = ξΦ
2, (9.112)

B(Φ) = 1, (9.113)

σ(Φ) = 0, (9.114)

V(Φ) = Λ
4 +

1
8

βλΦ

(

ln
Φ2

v2
Φ

− 1
2

)

Φ
4, (9.115)

where the cosmological constant Λ4 was included in order to realize V(vΦ) = 0 and βλΦ
is the

beta function of the quartic scalar coupling λΦ. Furthermore, in this model the Planck scale is
dynamically generated through the VEV of the scalar field vΦ and we have

1 = ξv2
Φ. (9.116)

Minimization of the potential (9.115) yields

βλΦ
= 16

Λ4

v4
Φ

. (9.117)

This means we can eliminate βλΦ
in (9.115) and rewrite the potential as

V(Φ) = Λ
4
{

1 +
[

2 ln
(

Φ2

v2
Φ

)

− 1
]

Φ4

v4
Φ

}

(9.118)

From the expressions of the model functions (9.112) - (9.115) we can readily obtain the invariants
Im, IV and Iφ. The invariant field takes the form

Iφ =

√

1 + 6ξ

2ξ
ln
(

Φ

vΦ

)

. (9.119)

By inverting the above equation we can express the invariant Im in terms of Iφ as

Im = e−2
√

2ξ
1+6ξ Iφ , (9.120)

and also the invariant potential IV in terms of Iφ as

IV = Λ
4

(

4

√

2ξ

1 + 6ξ
Iφ + e−4

√

2ξ
1+6ξ Iφ − 1

)

, (9.121)

where we used (9.116). From the invariant potential (9.121) we can calculate the PSRPs (9.52), (9.54)
- (9.56) and then the scalar index nS [c.f. (9.108)] and the tensor-to-scalar ratio r [c.f. (9.109)] and
compare them with the experimental bounds. Another important observable is the amplitude of
scalar perturbations AS = (2.14 ± 0.05)× 10−9 [51], which can be used to constrain the value of Λ

(see Fig. 3 in [148]).

Now, depending on whether the field Φ rolls down from values larger or smaller than its VEV,
the invariant Iφ can have positive or negative values. Since negative field inflation produces r &
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n(I)
S n(III)

S r(I) r(III) ξ

N̂ = 60 0.96702 0.96712 0.12782 0.12552 10−5

N̄ = 60 0.96699 0.96709 0.12792 0.12562 10−5

N̂ = 60 0.96935 0.96956 0.09655 0.09466 10−3

N̄ = 60 0.96911 0.96933 0.09736 0.09544 10−3

N̂ = 60 0.97451 0.97477 0.06796 0.06675 0.1

N̄ = 60 0.97320 0.97348 0.07148 0.07013 0.1

N̂ = 60 0.97482 0.97507 0.06716 0.06597 10

N̄ = 60 0.97276 0.97305 0.07264 0.07125 10

Table 9.1: First and third order results for the observables of the nonminimal Coleman-Weinberg

model considered in [148] for various values of the nonminimal coupling ξ and for N̂ = N̄ = 60. We

see that as ξ grows so does the difference between the observables, depending on which definition

for the e-folds we use.

0.15 [148], which is excluded by observations [1, 51], we will not consider it further. Instead, we
will only focus on positive field inflation which interpolates between quadratic [31] and linear [667]
inflation depending on the value of the nonminimal coupling ξ. In the limit ξ → 0, the invariant
potential is approximated as

IV |ξ→0 ∼ 16 ξ Λ
4 I2

φ, (9.122)

while in the limit ξ → ∞,

IV |ξ→∞ ∼ 4√
3

Λ
4 Iφ. (9.123)

Quadratic inflation is excluded by the Planck and BICEP2/Keck results [1,51] but linear inflation
still lies within the 2σ allowed region. In Table 9.1 we present our results for the first and third
order scalar index nS and tensor-to-scalar ratio r for various values of the nonminimal coupling ξ.
For simplicity, we have assumed that inflation ends at Φ = vΦ, or equivalently Iend

φ = 0, where
the two frames coincide. Furthermore, we have approximated ǫH ≈ ǫV in the expressions (9.110)
and (9.111). In each case, for every value of ξ considered, we have varied IHC

φ at horizon crossing
in order to get N̂ = 60 and N̄ = 60. This means that we obtain a different value for Iφ depending
on which definition for the e-folds we use. Consequently, the predictions for nS and r differ. For
small ξ the difference between the frames is negligible. However, for larger ξ the difference grows
and becomes around 0.002 (or 0.2%) for nS and 0.005 (or 8%) for r around ξ = 10. For large ξ, such
a difference is actually larger than the difference between the first and third order results for the
observables (0.03% for nS and 1.9% for r). Both of these types of differences however should be
within the reach of future experiments such as CORE and LiteBIRD [52, 666] which are expected to
measure r with an accuracy of 10−3.

Another way to illustrate the disparity between the two definitions for the e-folds is to examine
how the same field excursion affects the number of e-folds itself. In Fig. 9.2, for a wide range of
values of ξ, we calculate the invariant IHC

φ for which N̂ = 50 and N̂ = 60. Then, for the same value
of Iφ we calculate the corresponding JF e-folds N̄ and plot the difference with the EF e-folds N̂. One
can see that, as expected, the difference asymptotes to zero for ξ → 0 due to the vanishing second
term in (9.111). On the other hand, as ξ grows so does the difference N̄ − N̂ until it reaches a value
of about 4.3 e-folds for N̂ = 50 and 4.7 e-folds for N̂ = 60. Note that for ξ & 10 the difference stops
growing since the model has reached the linear inflation attractor. We perceive the JF definition for
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Figure 9.2: The difference between the JF (N̄) and the EF (N̂) number of e-folds as a function of the

nonminimal coupling ξ for N̂ = 60 (top curve) and N̂ = 50 (bottom curve). We see that as ξ grows

we need more e-folds in the Jordan frame for the same inflaton field excursion.

the number of e-folds as the fundamental one since it is composed of all three invariants (9.1)–(9.3)
and also accommodates the EF definition.

9.4.2 Taylor vs Padé

Let us also examine how the end-of-inflation condition affects the observables. Inflation ends ex-
actly at ǫH = 1. Most authors usually adopt the slow-roll approximation and consider the relation
between ǫH and the PSRPs at first order in the Taylor expansion and solve

ǫ
(I)
H = ǫV = 1 (9.124)

in order to obtain the inflaton field value at the end of inflation. In our case, since we have obtained
nS and r at third order in the PSRPs, it would seem prudent to also approximate ǫH in the definition
of e-folds with the third order Taylor expansion and solve

ǫ
(III)
H = ǫV − 4

3
ǫ2

V +
2
3

ǫVηV +
32
9

ǫ3
V +

5
9

ǫVη2
V − 10

3
ǫ2

VηV +
2
9

ǫVζ2
V = 1 (9.125)

in order to obtain Iend
φ . Nevertheless, even though the third order Taylor expansion is a very good

approximation around the time of horizon crossing when the slow-roll parameters are small, the
same does not hold near the end of inflation when ǫV and ηV become of order one since the third
order expansion actually blows up and thus fails to accurately describe the entirety of the inflation-
ary epoch. A more accurate option, as pointed out in [32], is to consider a Padé approximation for
ǫH. The [1/1] Padé approximant is given by

ǫ
[1/1]
H =

ǫV

1 + 4
3 ǫV − 2

3 ηV
, (9.126)
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N̂ = 50 n(I)
S n(III)

S r(I) r(III) ξ

end: ǫ
(I)
H = 1 0.96078 0.96092 0.15238 0.14914 10−5

end: ǫ
[1/1]
H = 1 0.95979 0.95994 0.15626 0.15285 10−5

end: ǫ
(III)
H = 1 0.96032 0.96047 0.15417 0.15085 10−5

end: ǫ
[2/2]
H = 1 0.96019 0.96034 0.15468 0.15134 10−5

end: ǫ
(I)
H = 1 0.96955 0.96991 0.08121 0.07948 0.1

end: ǫ
[1/1]
H = 1 0.96870 0.96908 0.08348 0.08165 0.1

end: ǫ
(III)
H = 1 0.96922 0.96959 0.08208 0.08031 0.1

end: ǫ
[2/2]
H = 1 0.96909 0.96946 0.08244 0.08066 0.1

Table 9.2: First and third order results for the observables of the model [148] for two values of the

nonminimal coupling ξ and for N̂ = 50 using the four end-of-inflation conditions described in the text.

We see that the differences are small albeit comparable to the differences between the first and third

order results.

while the [2/2] approximant has the form

ǫ
[2/2]
H =

ǫV + 17
4 ǫ2

V − 5
3 ǫVηV

1 + 67
12 ǫV − 7

3 ηV − 7
2 ǫVηV + 35

9 ǫ2
V + η2

V − 2
9 ζ2

V

+
2
27

ǫVρ3
V − 1

54
ǫ3

VηV +
35
108

ǫ2
Vη2

V − 13
54

ǫ2
Vζ2

V − 1
9

ǫVη3
V .

(9.127)

In Table 9.2 we present the results for nS and r for ξ = 10−5, ξ = 0.1 and N̂ = 50 having
employed the four end-of-inflation conditions for Iend

φ described above and the corresponding ex-
pressions (9.124) - (9.127) for ǫH in the e-folds integral. We find that the difference between the four
methods is small for nS but larger for r which has a greater dependence on ǫH. The largest difference
for r between the methods occurs for small ξ since its value is sizeable (r ≃ 0.15) and a small change
in the value of Iend

φ affects it noticeably. In any case, the differences between the end-of-inflation
methods on nS and r are comparable to the differences between the first and third order results.
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Chapter 10

Conclusions and Outlook

In this thesis, we have considered classical scale invariance to be a fundamental property of Nature
and have constructed models where the electroweak, neutrino, dark matter and Planck scales can
by dynamically generated through the Coleman-Weinberg mechanism. In Chapters 2 through 5 we
set up the stage by reviewing the ΛCDM model, the theory of cosmic inflation, the Standard Model
of Particle Physics and the dark matter problem. Then, Chapter 6 was devoted to classical scale
invariance.

In Chapter 7 we considered a classically scale invariant version of the Standard Model, enlarged
by a dark SU(2)X gauge group which incorporates three vector bosons and a scalar field in the
fundamental representation. We also included a real singlet scalar field and Majorana neutrinos
coupled to it. The dark sector was radiatively broken through the Coleman-Weinberg mechanism
and a mass scale was communicated to the electroweak and neutrino sectors through the portal
interactions of the dark doublet with the Higgs and singlet scalars. We started by determining the
necessary conditions for the stability of the potential and then proceeded in studying the full one-
loop scalar potential, employing the Gildener-Weinberg formalism. We obtained the scalar masses
through a particular parametrization of the scalar VEVs, and saw that one of these masses, although
zero at tree level, received large quantum corrections. Neutrinos obtained masses through the re-
alization of a type-I low-energy seesaw mechanism. After setting up the model, we proceeded to
consider constraints to its set of free parameters through stability and perturbativity considerations,
as well as bounds set by the LHC.

We identified the extra gauge bosons as WIMP dark matter candidates. We considered the Boltz-
mann equation and solved it semi-analytically in the non-relativistic approximation after calculat-
ing the total thermally averaged annihilation and semi-annihilation cross sections. In this way, we
obtained the dark matter relic density, and by matching it to the observed value we constrained the
dark matter mass to be in the range MX ∼ 710 − 740 GeV (Fig. 7.7). Then, considering the dark
matter elastic scattering off a nucleon we computed the spin-independent scattering cross section
and compared it with existing and projected limits from direct detection experiments. We found
that dark matter masses above ∼ 700 GeV evade limits set by LUX (2013) but can nevertheless be
tested by XENON 1T.

In conclusion, the classically scale invariant model that we considered in Chapter 7 is a perfectly
viable extension of the Standard Model, able to dynamically generate the dark matter, neutrino and
electroweak scales through the multi-Higgs portal while stabilizing the vacuum. It predicts new
scalar states that future collider searches may be able to discover and predicts vector dark matter
with a definite mass range that can be probed by direct detection experiments in the years to come.

This model was reconsidered in Ref. [412], were the authors examined how oscillations between
the right-handed neutrinos can lead to lepton number asymmetry which can then be converted
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to the baryon asymmetry by electro-weak sphalerons. In this way, the problem of the matter-
antimatter asymmetry is also solved.

In Chapter 8 we examined a classically scale-invariant extension of the SM, enlarged by a weakly
coupled dark SU(3)X gauge group. The extra sector consists of the eight dark gauge bosons and
two complex scalar triplets. Under mild assumptions on the parameters of the scalar potential of the
model the scalar triplets can develop nonvanishing VEVs and break the extra SU(3)X completely
via the Coleman-Weinberg mechanism. Eight of the 12 scalar degrees of freedom are absorbed by
the dark gauge bosons, rendering them all massive. We focused on and analyzed the case in which
the symmetry breaking pattern involves two VEVs. As a result of the portal couplings of the dark
scalars to the Higgs field, the dark gauge symmetry breakdown triggers electroweak symmetry
breaking. In the framework of the Gildener-Weinberg formalism, we considered the full one-loop
effective potential. At one-loop level the pseudo–Nambu-Goldstone boson of broken classical scale
symmetry receives a large radiative mass. Out of the massive dark gauge bosons the lightest three
of them are almost degenerate in mass and also stable due to an intrinsic Z2 × Z′

2 discrete symmetry
of SU(3)X. These are identified as DM candidates.

The parameters of the model and the mass patterns resulting from symmetry breaking were
subsequently subjected to the various existing theoretical and experimental constraints. The re-
quirements on the tree-level and one-loop effective scalar potential to be bounded from below were
analyzed. Constraints arising from LHC searches and measurements of the electroweak parameters
S and T were also examined. Thus, we obtained five benchmark points for the parameters of the
model that stabilize the vacuum, satisfy the experimental constraints, and reproduce the measured
mass for the observed Higgs boson.

Having analyzed the phenomenological viability of the model, a comprehensive DM analysis
was undertaken. After identifying the relevant DM processes (annihilations, semiannihilations,
coannihilations, and DM conversions), the set of coupled Boltzmann equations was constructed,
describing the number density evolution of the DM candidates in order to obtain their total relic
density and compare it to the measured value. The Boltzmann equations were solved numerically
in two cases defined by the VEVs of the SU(3)X scalar fields.

In the first case, the VEV separation was large (v2
1 ≫ v2

2) and the three dark gauge boson can-
didates X1, X2, and X3′ were nearly degenerate in mass. This case may seem similar to the dark
SU(2)X model where the extra gauge symmetry gets broken by a complex scalar doublet. There,
the three dark gauge bosons are completely degenerate in mass and contribute equally to the DM
relic density. In the SU(3)X model, however, even though X1,2,3′ are nearly degenerate in mass,
the lightest of the three (X3′) is the predominant DM component. This occurs mainly due to the
mixing between X3′ and X8′ which means that more Feynman diagrams contribute to the semi-
annihilation processes X1,2X1,2 → X3′hi and the annihilation processes X3′X3′ → hihj. Also, even
though the mass splitting is small, some of the X1,2 particles are converted to X3′ and increase its
final relic density. Finally, as it is transparent in the framework of the GW formalism employed,
the pNGB mass depends on all the other masses of the model. Consequently, there can be only one
resonant dip for the DM relic density in the SU(2)X model (corresponding to MHiggs/2) and two in
the SU(3)X model (corresponding to Mh1 /2 and Mh3 /2). Therefore, in general, enlarging the gauge
group means that more scalars are needed in order to break it, which leads to a larger parameter
space that may be compatible with cosmological observations.

In the second case, the VEVs were very close (v1 ≃ v2). This resulted in X3′ being around 20%
lighter than X1, X2 (which were exactly degenerate) and X4, X5 (which were exactly degenerate
too) now being close in mass with X1 and X2. Therefore, possible coannihilation effects had to be
examined. Nevertheless, it turned out that the dominant process was DM conversion and X3′ was
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again the predominant DM component. Finally, we determined that the DM candidates have viable
prospects of being directly detected by future underground experiments.

This model was reconsidered in [422], albeit without classical scale invariance. There, the au-
thors examined all possible combinations for the particles that could constitute dark matter.

In Chapter 9, we began by briefly reviewing the frame and reparametrization invariant formal-
ism of scalar-tensor theories developed in [203–206, 655]. This formalism proves to be useful for
inflation since it allows us to classify various models based on their invariant potentials. There-
fore, it becomes transparent why theories with very different physical motivations yield similar
predictions for the inflationary observables.

Motivated by the imminent advancement in the sensitivity of the experiments, we then calcu-
lated the tensor and scalar spectral indices as well as the tensor-to-scalar ratio up to third order in
the HSRPs in both the Einstein and Jordan frames employing the Green’s function method intro-
duced in [55]. After this, utilizing the relation between the HSRPs in the two frames, we showed
the equivalence of the frames. By construction, the Green’s function method is valid to arbitrary
order in the slow-roll expansion. Therefore, we expect the equivalence to hold up to any order. In
addition, since the HSRPs are related to the PSRPs, we expressed the spectral indices and the ratio
in terms of the PSRPs which are manifestly invariant.

Nevertheless, since the definition of the number of e-folds is different in the two frames, this
can result to different predictions for the observables. We demonstrated this difference by consid-
ering the nonminimally coupled Coleman-Weinberg model examined in [148] and saw that as the
nonminimal coupling grows so does the difference in the predictions. Such a difference can in fact
be larger than the differences between the first and third order results and will be detectable by
the planned future experiments. We regard the Jordan frame definition for the number of e-folds
(9.111) as the fundamental one since it can be expressed in terms of all the principal invariants and
also includes the Einstein definition. Furthermore, we examined how various end-of-inflation con-
ditions affect the inflationary observables. We found that the differences between the methods are
comparable to the differences between the first and third order results.

The above discussion proves that with the advent of precision experiments, care must be taken
when analyzing a given inflationary model since the underlying methods and assumptions used
may play an instrumental role in determining the viability of said model.

A possible future direction would be to construct classically scale-invariant models where the
strong CP problem and the rest of the SM problems are also solved. Furthermore, it would be worth
investigating how a viable inflationary model where the Planck mass is dynamically generated
could be connected through the reheating process to the rest of the scales examined here and explore
what possible phenomenological implications such a model could have.
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Appendix A

Oblique parameters

The S and T parameters are given in the model discussed in Chapter 8 by the expressions (see
also [379, 405, 518])

S =
1

24π

{
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11

[
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]
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, (A.2)

where the functions RAB, G(m2
A, m2

B), and f (RAB) are given by

RAB =
M2

A

M2
B

, (A.3)

G(M2
A, M2

B) = −79
3

+ 9RAB − 2R2
AB + (12 − 4RAB + R2

AB) f (RAB)

+(−10 + 18RAB − 6R2
AB + R3

AB − 9
RAB + 1
RAB − 1

) log RAB, (A.4)

f (RAB) =



















√

RAB(RAB − 4) log
∣

∣

∣

∣

RAB−2−
√

RAB(RAB−4)
2

∣

∣

∣

∣

RAB > 4,

0 RAB = 4,

2
√

RAB(4 − RAB) arctan
√

4−RAB
RAB

RAB < 4.

(A.5)
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Appendix B

Renormalization group equations

In this appendix, we present the two-loop gauge RGEs, as well as the one-loop RGEs for the Yukawa
and scalar couplings for the model discussed in Chapter 8. However, in our numerical analysis we
used the full set of two-loop RGEs obtained using SARAH [612, 613]. Defining βκ ≡ (4π)2 dκ

d ln µ , the
RGEs have the form

βg1 =
41
10

g3
1 +

1
(4π)2

1
50

g3
1

(

199g2
1 + 135g2

2 + 440g2
3 − 85y2

t

)

, (B.1)

βg2 = −19
6

g3
2 +

1
(4π)2

1
30

g3
2

(

27g2
1 + 175g2

2 + 360g2
3 − 45y2

t

)

, (B.2)

βg3 = −7g3
3 +

1
(4π)2

1
10

g3
3

(

11g2
1 + 45g2

2 − 260g2
3 − 20y2

t

)

, (B.3)

βgX = −32
3

g3
X − 1

(4π)2
284
3

g5
X, (B.4)

βyt = yt

(

9
2

y2
t −

17
20

g2
1 −

9
4

g2
2 − 8g2

3

)

, (B.5)

βλh
= −6y4

t + 24λ2
h + λh

(

12y2
t −

9
5

g2
1 − 9g2

2

)

+
27

200
g4

1 +
9
20

g2
1g2

2 +
9
8

g4
2 + 3λ2

h1 + 3λ2
h2, (B.6)

βλ1 = −16g2
Xλ1 + 28λ2

1 − 2λ3λ4 + 2λ2
h1 + 3λ2

3 +
13
6

g4
X + λ2

4 + λ2
5, (B.7)

βλ2 = −16g2
Xλ2 + 28λ2

2 − 2λ3λ4 + 2λ2
h2 + 3λ2

3 +
13
6

g4
X + λ2

4 + λ2
5, (B.8)

βλh1 = λh1

(

− 9
10

g2
1 −

9
2

g2
2 − 8g2

X + 12λh − 4λh1 + 16λ1 + 6y2
t

)

+ 6λh2λ3 − 2λh2λ4, (B.9)
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− 9
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9
2
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2 − 8g2

X + 12λh − 4λh2 + 16λ1 + 6y2
t

)

+ 6λh1λ3 − 2λh1λ4, (B.10)

βλ3 = λ3
(

−16g2
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5 − 4λ1λ4 − 4λ2λ4 + 4λh1λh2 −
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X, (B.11)

βλ4 = 10λ2
5 − 16g2

Xλ4 + 4λ1λ4 + 4λ2λ4 + 6λ2
4 − 8λ3λ4 +

5
2

g4
X, (B.12)

βλ5 = 4λ5
(

−2λ3 − 4g2
X + 4λ4 + λ1 + λ2

)

. (B.13)

For the SM gauge couplings and the top quark Yukawa coupling we specify the boundary con-
ditions at the top quark pole mass Mt [4, 571],
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g1(µ = Mt) =

√

5
3

(

0.35830 + 0.00011
(

Mt

GeV
− 173.34

)

− 0.00020
(

MW − 80.384 GeV
0.014 GeV

))

,

(B.14)

g2(µ = Mt) = 0.64779 + 0.00004
(

Mt

GeV
− 173.34

)

+ 0.00011
(

MW − 80.384 GeV
0.014 GeV

)

, (B.15)

g3(µ = Mt) = 1.1666 + 0.00314
(

αs(MZ)− 0.1184
0.0007

)

− 0.00046
(

Mt

GeV
− 173.34

)

, (B.16)

yt(µ = Mt) = 0.93690 + 0.00556
(

Mt

GeV
− 173.34

)

− 0.00042
(

αs(MZ)− 0.1184
0.0007

)

, (B.17)

whereas the dark gauge coupling is defined at the scale of the lightest dark gauge boson gX(MX3′ ).
The boundary conditions for the scalar couplings are specified at the renormalization scale Λ where
the tree-level potential is minimized.
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Appendix C

From Hubble to potential slow-roll
parameters

The HSRPs are related to the PSRPs up to third order in the Taylor expansion via the following
expressions [32]:

ǫH = ǫV − 4
3

ǫ2
V +

2
3

ǫVηV +
32
9

ǫ3
V +

5
9

ǫVη2
V − 10

3
ǫ2

VηV +
2
9

ǫVζ2
V , (C.1)
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8
3

ǫ2
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1
3
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V − 8

3
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1
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9
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VηV

−46
9

ǫVη2
V − 17

9
ǫVζ2
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3
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3
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4
3
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1
3

ρ3
V , (C.3)

ρ3
H = ρ3

V − 3ǫVη2
V + 18ǫ2

VηV − 15ǫ3
V − 4ǫVζ2

V . (C.4)
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Appendix D

Runnings of the spectral indices

The runnings of the tensor and scalar spectral indices up to third order in the HSRPs are given in
the JF by

dn̄T

d ln k
= −2κ̄0κ̄1 − 6κ̄0κ̄1λ̄0 − 4κ̄0λ̄0λ̄1 − 6κ̄2

0κ̄1 + (2α − 2)
(

κ̄0κ̄2
1 + κ̄0κ̄1κ̄1

)

, (D.1)

dn̄S

d ln k
= −2κ̄0κ̄1 − κ̄1κ̄2 − 6κ̄0κ̄1λ̄0 − 4κ̄0λ̄0λ̄1 − κ̄1λ̄0λ̄1 − 2κ̄1κ̄2λ̄0 − 2λ̄0λ̄1λ̄2

−2λ̄0λ̄2
1 − 6κ̄2

0κ̄1 + (2α − 3) κ̄0κ̄2
1 + (2α − 4) κ̄0κ̄1κ̄2 + α

(

κ̄1κ̄2
2 + κ̄1κ̄2κ̄3

)

, (D.2)

while in the EF the runnings have the form

dn̂T

d ln k
= −2κ̂0κ̂1 − 6κ̂2

0κ̂1 + (2α − 2)
(

κ̂0κ̂2
1 + κ̂0κ̂1κ̂1

)

, (D.3)
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= −2κ̂0κ̂1 − κ̂1κ̂2 − 6κ̂2

0κ̂1 + (2α − 3) κ̂0κ̂2
1 + (2α − 4) κ̂0κ̂1κ̂2

+α
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κ̂1κ̂2
2 + κ̂1κ̂2κ̂3

)

. (D.4)

Again, plugging (9.96) - (9.99) into the EF expressions, one can see that the expressions for the
runnings of the spectral indices in the two frames coincide. Finally, the runnings of the spectral
indices can be written in terms of the PSRPs as

dnT

d ln k
= −8ǫ2

V + 4ǫVηV +

(
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3
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(
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2
3

)

ρ3
V . (D.6)
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Appendix E

Equation of motion in terms of e-folds

We can rewrite the equation of motion for the invariant Iφ as a nonlinear second order differential
equation with respect to the number of e-folds. In the Einstein frame we have

d2Iφ

dN̂2
+ 3

dIφ

dN̂
−
(

dIφ

dN̂

)3

+

[

1 − 1
3

(

dIφ

dN̂

)2
]

3
√

ǫV = 0, (E.1)

while in the Jordan frame the equation of motion can be brought to the following form:
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1
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− d ln Im
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− 1

3

(

dIφ

dN̄

)2
]

3
√

ǫV = 0.

(E.2)

By numerically solving these equations we can obtain the invariant field as a function of the number

of e-folds in the two frames. Of course, in the case with minimal coupling we have d ln Im
dN̄ = d2 ln Im

dN̄2 =

0 and N̄ = N̂, which means that (E.2) reduces to (E.1).
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of 25 MilkyÂăWay satellite galaxies with the Fermi Large Area Telescope,” Phys. Rev. D89

(2014) 042001, arXiv:1310.0828 [astro-ph.HE].

[492] H.E.S.S. Collaboration, A. Abramowski et al., “Search for dark matter annihilation
signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies,” Phys. Rev. D90 (2014)
112012, arXiv:1410.2589 [astro-ph.HE].

[493] H.E.S.S. Collaboration, A. Abramowski et al., “Constraints on an Annihilation Signal from a
Core of Constant Dark Matter Density around the MilkyÂăWay Center with H.E.S.S.,” Phys.
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